Search results for: fresh properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3058

Search results for: fresh properties

2188 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey

Authors: Rahmi Kafadar, Levent Genc

Abstract:

In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area- Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3- B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of Rural Services Directorate General. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.

Keywords: Digital Elevation Model (DEM), Geographic Information Systems (GIS), LANDSAT 8 OLI-TIRS, Land Use Land Cover (LULC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
2187 Evaluation of Baking Properties and Sensory Quality of Wheat-Cowpea Flour

Authors: Mohamed A. Ahmed, Lydia J. Campbell

Abstract:

The fortified of soft wheat flour with cowpea flour in bread making was investigated. The Soft wheat flour (SWF) was substituted by cowpea flour at levels of 5, 15 and 20%. The protein content of composite breads ranged from 6.1 – 9.9%. Significant difference was observed in moisture, protein and crude fibre contents of control (wheat bread) and composite bread at 5% addition of cowpea. Water absorption capacities of composite flours increased with increasing levels of cowpea flour in the blend. The specific loaf volume decreased significantly with increased cowpea content of blends. The overall acceptability of the 5% cowpea flour content of composite bread was not significantly different from the control (Soft Wheat-bread) but there is significantly different with increasing the levels of cowpea flour in the blend more than 5%.

Keywords: Cowpea flour, wheat flour, baking properties, sensory quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
2186 Preparation of Nanostructure ZnO-SnO2 Thin Films for Optoelectronic Properties and Post Annealing Influence

Authors: Vipin Kumar Jain, Praveen Kumar, Y.K. Vijay

Abstract:

ZnO-SnO2 i.e. Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO2 - 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO film were annealed at 450 0C in vacuum. These films were characterized to study the effect of annealing on the structural, electrical, and optical properties. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) images manifest the surface morphology of these ZTO thin films. The apparent growth of surface features revealed the formation of nanostructure ZTO thin films. The small value of surface roughness (root mean square RRMS) ensures the usefulness in optical coatings. The sheet resistance was also found to be decreased for both types of films with increasing concentration of SnO2. The optical transmittance found to be decreased however blue shift has been observed after annealing.

Keywords: ZTO thin film, AFM, SEM, Optical transmittance, Sheet resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
2185 Progressive Loading Effect of Co over SiO2/Al2O3 Catalyst for Cox Free Hydrogen and Carbon Nanotubes Production via Catalytic Decomposition of Methane

Authors: Sushil Kumar Saraswat, K. K. Pant

Abstract:

Co metal supported on SiO2 and Al2O3 catalysts with a metal loading varied from 30 of 70 wt.% were evaluated for decomposition of methane to COx free hydrogen and carbon nanomaterials. The catalytic runs were carried out from 550-800oC under atmospheric pressure using fixed bed vertical flow reactor. The fresh and spent catalysts were characterized by BET surface area analyzer, XRD, SEM, TEM and TG analysis. The data showed that 50% Co/Al2O3 catalyst exhibited remarkable higher activity at 800oC with respect to H2 production compared to rest of the catalysts. However, the catalytic activity and durability was greatly declined at higher temperature. The main reason for the catalytic inhibition of Co containing SiO2 catalysts is the higher reduction temperature of Co2SiO4. TEM images illustrate that the carbon materials with various morphologies, carbon nanofibers (CNFs), helical-shaped CNFs and branched CNFs depending on the catalyst composition and reaction temperature were obtained.

Keywords: Carbon nanotubes, Cobalt, Hydrogen Production, Methane decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
2184 Integrated Water Management for Lafarge Cement-Jordan

Authors: Azzam Hamaideh, Abbas Al-Omari, Michael Sturm

Abstract:

This study aims at implementing integrated water resources management principles to the Lafarge Cement Jordan at Al-Fuhais plant. This was accomplished by conducting water audits at all water consuming units in the plant. Based on the findings of the water audit, an action plan to improve water use efficiency in the plant was proposed. The main elements of which are installing water saving devices, re-use of the treated wastewater, water harvesting, raising the awareness of the employees, and linking the plant to the water demand management unit at the Ministry of Water and Irrigation.

The analysis showed that by implementing the proposed action plan, it is expected that the industrial water demand can be satisfied from non-conventional resources including treated wastewater and harvested water. As a consequence, fresh water can be used to increase the supply to Al-Fuhais city which is expected to reflect positively on the relationship between the factory and the city. 

Keywords: Integrated water resources management, non-conventional water resources, water awareness, water demand management, water harvesting, water saving devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
2183 The Effects of Electromagnetic Stirring on Microstructure and Properties of γ-TiAl Based Alloys Fabricated by Selective Laser Melting Technique

Authors: A. Ismaeel, C. S. Wang, D. S. Xu

Abstract:

The γ-TiAl based Ti-Al-Mn-Nb alloys were fabricated by selective laser melting (SLM) on the TC4 substrate. The microstructures of the alloys were investigated in detail. The results reveal that the alloy without electromagnetic stirring (EMS) consists of γ-TiAl phase with tetragonal structure and α2-Ti3Al phase with hcp structure, while the alloy with applied EMS consists of γ-TiAl, α2-Ti3Al and α-Ti with hcp structure, and the morphological structure of the alloy without EMS which exhibits near lamellar structure and the alloy with EMS shows duplex structure, the alloy without EMS shows some microcracks and pores while they are not observed in the alloy without EMS. The microhardness and wear resistance values decrease with applied EMS.

Keywords: Selective laser melting, γ-TiAl based alloys, microstructure, properties, electromagnetic stirring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
2182 Titanium-Aluminum Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.

Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3581
2181 Histological Study of Postmortem Juvenile Green Sea Turtle (Chelonia mydas) from Royal Thai Navy Sea Turtle Nursery, Phang-nga, Thailand

Authors: Saowaluk Sikiwat, Mayuree Pumipaiboon, Sutee Kaewsangiem, Mayuva Areekijseree

Abstract:

The problem on the conservation programme of the Royal Thai Navy Sea Turtle Nursery, Phang-nga Province, Thailand is high mortality rate of juvenile green sea turtle (Cheloniamydas) on nursing period. So, during May to October 2012, postmortem examinations of juvenile green sea turtle were performed to determine the causes of dead. Fresh tissues of postmortem of 15 juvenile green sea turtles (1-3 months old) were investigated using paraffin section technique. The results showed normal ultrastructure of all tissue organs. These instances reviewed the health and stability of the environments in which juvenile green sea turtles live and concern for the survival rate. The present article also provides guidance for a review of the biology, guidelines for appropriate postmortem tissue, normal histology and sampling collection and procedures. The data also provides information for conservation of this endangered species in term of acknowledging and encouraging people to protect the animals and their habitats in nature.

Keywords: Green sea turtles (Cheloniamydas), histology, juvenile sea turtles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817
2180 Studies on the Blended Concrete Prepared with Tannery Effluent

Authors: K. Nirmalkumar

Abstract:

There is a acute water problem especially in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the waste water from tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength etc were studied by casting various concrete specimens in form of cube, cylinders and beams etc and were found to be satisfactory. Hence some special properties such as chloride attack, sulphate attack and chemical attack are considered and comparatively studied with the conventional potable water. In this experimental study the results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory.

Keywords: Calcium nitrite, concrete, fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
2179 Effect of Oxygen on Biochar Yield and Properties

Authors: Ramlan Zailani, Halim Ghafar, Mohamad Sofian So'aib

Abstract:

Air infiltration in mass scale industrial applications of bio char production is inevitable. The presence of oxygen during the carbonization process is detrimental to the production of biochar yield and properties. The experiment was carried out on several wood species in a fixed-bed pyrolyser under various fractions of oxygen ranging from 0% to 11% by varying nitrogen and oxygen composition in the pyrolysing gas mixtures at desired compositions. The bed temperature and holding time were also varied. Process optimization was carried out by Response Surface Methodology (RSM) by employing Central Composite Design (CCD) using Design Expert 6.0 Software. The effect of oxygen ratio and holding time on biochar yield within the range studied were statistically significant. From the analysis result, optimum condition of 15.2% biochar yield of mangrove wood was predicted at pyrolysis temperature of 403 oC, oxygen percentage of 2.3% and holding time of two hours. This prediction agreed well with the experiment finding of 15.1% biochar yield.

Keywords: Mangrove wood, slow pyrolysis, oxygen infiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3446
2178 Model Transformation with a Visual Control Flow Language

Authors: László Lengyel, Tihamér Levendovszky, Gergely Mezei, Hassan Charaf

Abstract:

Graph rewriting-based visual model processing is a widely used technique for model transformation. Visual model transformations often need to follow an algorithm that requires a strict control over the execution sequence of the transformation steps. Therefore, in Visual Model Processors (VMPs) the execution order of the transformation steps is crucial. This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This paper introduces VCFL, discusses its termination properties and provides an algorithm to support the termination analysis of VCFL transformations.

Keywords: Control Flow, Metamodel-Based Visual ModelTransformation, OCL, Termination Properties, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
2177 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah

Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Keywords: Coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
2176 Oil Palm Shell Ash - Cement Mortar Mixture and Modification of Mechanical Properties

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.

Keywords: Minerals, additive, flexural strength, compressive strength, modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
2175 Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays

Authors: Mariya P. Aleksandrova, Ivelina N. Cholakova, Georgy K. Bodurov, Georgy D. Kolev, Georgy H. Dobrikov

Abstract:

Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.

Keywords: Flexible displays, indium tin oxide, RF sputtering, UV treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
2174 Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates

Authors: Adil K. Tamimi, Tarig Ali, Rawan Anoohi, Ahmed Rajput, Kaltham Alkamali

Abstract:

3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project’s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete.  

Keywords: 3D printing, concrete mixes, workability, compressive strength, slump test, tensile strength, flexural strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
2173 Sweet Corn Water Productivity under Several Deficit Irrigation Regimes Applied during Vegetative Growth Stage using Treated Wastewater as Water Irrigation Source

Authors: Hirich A., Rami A., Laajaj K., Choukr-Allah R., Jacobsen S-E., El youssfi L., El Omari H.

Abstract:

Yield and Crop Water Productivity are crucial issues in sustainable agriculture, especially in high-demand resource crops such as sweet corn. This study was conducted to investigate agronomic responses such as plant growth, yield and soil parameters (EC and Nitrate accumulation) to several deficit irrigation treatments (100, 75, 50, 25 and 0% of ETm) applied during vegetative growth stage, rainfed treatment was also tested. The finding of this research indicates that under deficit irrigation during vegetative growth stage applying 75% of ETm lead to increasing of 19.4% in terms of fresh ear yield, 9.4% in terms of dry grain yield, 10.5% in terms of number of ears per plant, 11.5% for the 1000 grains weight and 19% in terms of crop water productivity compared with fully irrigated treatment. While those parameters in addition to root, shoot and plant height has been affected by deficit irrigation during vegetative growth stage when increasing water stress degree more than 50% of ETm.

Keywords: Leaf area, yield, crop water productivity, water saving

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
2172 Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P>0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene. 

Keywords: Carrot, vacuum freeze dryer, oven, beta carotene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
2171 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Authors: Ceren Ince, Berkay Z. Erdem, Shahram Derogar, Nabi Yuzer

Abstract:

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper, first of all, investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. Volume proportions of 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total rate of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower water absorption capacities compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Keywords: Diatomite, fibre, strength, supplementary cementing materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
2170 Green-Reduction of Covalently Functionalized Graphene Oxide with Varying Stoichiometry

Authors: A. Pruna, D. Pullini, D. Busquets

Abstract:

Graphene-based materials were prepared by chemical reduction of covalently functionalized graphene oxide with environmentally friendly agents. Two varying stoichiometry of graphene oxide (GO) induced by using different chemical preparation conditions, further covalent functionalization of the GO materials with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide and ascorbic acid and sodium bisulfite as reducing agents were exploited in order to obtain controllable properties of the final solution-based graphene materials. The obtained materials were characterized by thermo-gravimetric analysis, Fourier transform infrared and Raman spectroscopy and X-ray diffraction. The results showed successful functionalization of the GO materials, while a comparison of the deoxygenation efficiency of the two-type functionalized graphene oxide suspensions by the different reducing agents has been made, revealing the strong dependence of their properties on the GO structure and reducing agents.

Keywords: Graphene oxide, covalent functionalization, reduction, ascorbic acid, sodium bisulfate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3648
2169 Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Authors: Mukul Shukla, Rasheedat M. Mahamood, Esther T. Akinlabi, Sisa. Pityana

Abstract:

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.

Keywords: Laser Metal Deposition, Material Efficiency, Microstructure, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628
2168 Comparison of Physico-Chemical Properties And Fatty Acid Compostion of Elateriospermum Tapos (Buah Perah), Palm Oil And Soybean Oil

Authors: Siti Hamidah, Lee Nian Yian, Azizi Mohd

Abstract:

Elateriospermum tapos seed (buah perah) is the one of the rich sources of polyunsaturated fatty acids. It contains high percentage of oleic acid which is the important component to develop nervous system and also α-linolenic acid (ALA) which is the precursor of omega-3 fatty acids series to synthesize eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, there is less study about this valuable oilseed and exploit its potential. Therefore, this paper is to assess the comparison of physico-chemical properties and fatty composition of perah oil to palm oil and soybean oil. From the comparison, perah oil shows low peroxide value means it has good oxidative stability and also high iodine values shows that it can be used in paint industry. The study shown that perah oil is comparable to palm oil and soybean oil, so it has high potential to be exploited in the oleochemical, pharmaceutical, cosmetics and paint industries.

Keywords: α-linolenic acid, palm oil, perah oil, soybean oil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
2167 Biodegradable Surfactants for Advanced Drug Delivery Strategies

Authors: C. Hönnscheidt, R. Krull

Abstract:

Oxidative stress makes up common incidents in eukaryotic metabolism. The presence of diverse components disturbing the equilibrium during oxygen metabolism increases oxidative damage unspecifically in living cells. Body´s own ubiquinone (Q10) seems to be a promising drug in defending the heightened appearance of reactive oxygen species (ROS). Though, its lipophilic properties require a new strategy in drug formulation to overcome their low bioavailability. Consequently, the manufacture of heterogeneous nanodispersions is in focus for medical applications. The composition of conventional nanodispersions is made up of a drug-consisting core and a surfactive agent, also named as surfactant. Long-termed encapsulation of the surfactive components into tissues might be the consequence of the use during medical therapeutics. The potential of provoking side-effects is given by their nonbiodegradable properties. Further improvements during fabrication process use the incorporation of biodegradable components such as modified γ-polyglutamic acid which decreases the potential of prospective side-effects.

Keywords: Biopolymers, γ-Polyglutamic acid, Oxidative stress, Ubiquinone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
2166 Mechanical Properties Enhancement of 66/34Mg-Alloy for Medical Application

Authors: S. O. Adeosun, O. I. Sekunowo, O. P. Gbenebor, W. A. Ayoola, A. O. Odunade, T. A. Idowu

Abstract:

Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.

Keywords: Mg-Al alloy, artificial ageing, medical implant, cortical bone, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
2165 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Keywords: Invar alloy, Aluminum, Phase equilibrium, thermal expansion coefficient, microstructure, tensile properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
2164 Antimicrobial Properties of Copper in Gram-Negative and Gram-Positive Bacteria

Authors: Travis J. Meyer, Jasodra Ramlall, Phyo Thu, Nidhi Gadura

Abstract:

For centuries humans have used the antimicrobial properties of copper to their advantage. Yet, after all these years the underlying mechanisms of copper mediated cell death in various microbes remain unclear. We had explored the hypothesis that copper mediated increased levels of lipid peroxidation in the membrane fatty acids is responsible for increased killing in Escherichia coli. In this study we show that in both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa) bacteria there is a strong correlation between copper mediated cell death and increased levels of lipid peroxidation. Interestingly, the non-spore forming gram positive bacteria as well as gram negative bacteria show similar patterns of cell death, increased levels of lipid peroxidation, as well as genomic DNA degradation, however there is some difference in loss in membrane integrity upon exposure to copper alloy surface.

Keywords: Antimicrobial, copper, gram positive, gram negative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5591
2163 Drying of Papaya (Carica papaya L.) Using a Microwave-vacuum Dryer

Authors: Kraipat Cheenkachorn, Piyawat Jintanatham, Sarun Rattanaprapa

Abstract:

In present work, drying characteristics of fresh papaya (Carica papaya L.) was studied to understand the dehydration process and its behavior. Drying experiments were carried out by a laboratory scaled microwave-vacuum oven. The parameters affecting drying characteristics including operating modes (continuous, pulsed), microwave power (400 and 800 W), and vacuum pressure (20, 30, and 40 cmHg) were investigated. For pulsed mode, two levels of power-off time (60 and 120 s) were used while the power-on time was fixed at 60 s and the vacuum pressure was fixed at 40 cmHg. For both operating modes, the effects of drying conditions on drying time, drying rate, and effective diffusivity were investigated. The results showed high microwave power, high vacuum, and pulsed mode of 60 s-on/60 s-off favored drying rate as shown by the shorten drying time and increased effective diffusivity. The drying characteristics were then described by Page-s model, which showed a good agreement with experimental data.

Keywords: papaya, microwave-vacuum drying, effective diffusivity, Page's model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863
2162 Simulation of Acoustic Properties of Borate and Tellurite Glasses

Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi

Abstract:

Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.

Keywords: Glasses, ultrasonic wave velocities, elastic moduli, Makishima and Mackenzie model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
2161 Performance Enhancement of Membrane Distillation Process in Fruit Juice Concentration by Membrane Surface Modification

Authors: Samir K. Deshmukh, Mayur M. Tajane

Abstract:

In this work Membrane Distillation is applied to concentrate orange Juice. Clarified orange juice (11o Brix) obtained from fresh fruits and a sugar solution was subjected to membrane distillation. The experiments were performed on a flat sheet module using orange juice and sucrose solution as feeds. The concentration of a sucrose solution, used as a model fruit juice and also orange juice, was carried out in a direct contact membrane distillation using hydrophobic PTFE membrane of pore size 0.2 μm and porosity 70%. Surface modification of PTFE membrane has been carried out by treating membrane with alcohol and water solution to make it hydrophilic and then hydrophobicity was regained by drying. The influences of the feed temperature, feed concentration, flow rate, operating time on the permeate flux were studied for treated and non treated membrane. In this work treated and non treated membrane were compared in terms of water flux, Within the tested range, MD with surface modified membrane the water flux has been significantly improved by treating the membrane surface.

Keywords: Membrane Distillation, Surface Modification, Orange Juice. Polytetrafluoroethylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
2160 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: Ceramics, Dielectric, High-energy milling, Perovskite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
2159 Understanding the Behavior of Superconductors by Analyzing Permittivity

Authors: Fred Lacy

Abstract:

A superconductor has the ability to conduct electricity perfectly and exclude magnetic fields from its interior. In order to understand electromagnetic characteristics of superconductors, their material properties need to be examined. To facilitate this understanding, a theoretical model based on concepts of electromagnetics is presented to explain the electrical and magnetic properties of superconductors. The permittivity response is the key aspect of the model and it describes the electrical resistance response and why it vanishes at the material’s critical temperature. The model also explains the behavior of magnetic fields and why they cannot exist inside superconducting materials. The theoretical concepts and equations associated with this model are used to demonstrate that they are sufficient in describing the behavior of both type I and type II (or high temperature) superconductors. This model is also able to explain why superconductors behave differently than perfect conductors. As a result, examining the permittivity response and understanding electromagnetic field theory provides insight into the major aspects associated with superconducting materials.

Keywords: Ampere’s law, permittivity, permeability, resistivity, Schrödinger wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684