Search results for: flexural strength
1299 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
When high strength reinforced concrete is exposed to high temperature due to a fire, deteriorations occur such as loss in strength and elastic modulus, cracking and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. From four-point loading test, results show that maximum loads of the rehabilitated beams are similar to or higher than those of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. The parameters are the fire cover thickness and strengths of repairing mortar. Analytical results show good rehabilitation effects, when the results predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric cement mortar. The predictions from the finite element (FE) models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: Fire, High strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23781298 Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams
Authors: Khoa Tan Nguyen, Tuan Anh Le, Kihak Lee
Abstract:
This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occurring, the actual deflection of RGPC beam from experimental test results were slightly different from the results of ABAQUS. And there is good agreement between the crack patterns of fly ash-based geopolymer concrete generated by FE analysis using ABAQUS, and those in experimental data.
Keywords: Geopolymer concrete beam, finite element method, stress strain relation, modulus elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24891297 Mechanical Properties of Fibre Reinforced Concrete - A Comparative Experimental Study
Authors: Amir M. Alani, Morteza Aboutalebi
Abstract:
This paper in essence presents comparative experimental data on the mechanical performance of steel and synthetic fibre-reinforced concrete under compression, tensile split and flexure. URW1050 steel fibre and HPP45 synthetic fibre, both with the same concrete design mix, have been used to make cube specimens for a compression test, cylinders for a tensile split test and beam specimens for a flexural test. The experimental data demonstrated steel fibre reinforced concrete to be stronger in flexure at early stages, whilst both fibre reinforced concrete types displayed comparatively the same performance in compression, tensile splitting and 28-day flexural strength. In terms of post-crack controlHPP45 was preferable.
Keywords: Steel Fibre, Synthetic Fibre, Fibre Reinforced Concrete, Failure, Ductility, Experimental Study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74411296 High Performance Fibre Reinforced Alkali Activated Slag Concrete
Authors: A. Sivakumar, K. Srinivasan
Abstract:
The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.
Keywords: Accelerators, Alkali activators, Geopolymer, Hot air oven curing, Polypropylene fibres, Slag, Steam curing, Steel fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27971295 Effect of Transverse Reinforcement on the Behavior of Tension Lap splice in High-Strength Reinforced Concrete Beams
Authors: Ahmed H. Abdel-Kareem, Hala. Abousafa, Omia S. El-Hadidi
Abstract:
The results of an experimental program conducted on seventeen simply supported concrete beams to study the effect of transverse reinforcement on the behavior of lap splice of steel reinforcement in tension zones in high strength concrete beams, are presented. The parameters included in the experimental program were the concrete compressive strength, the lap splice length, the amount of transverse reinforcement provided within the splice region, and the shape of transverse reinforcement around spliced bars. The experimental results showed that the displacement ductility increased and the mode of failure changed from splitting bond failure to flexural failure when the amount of transverse reinforcement in splice region increased, and the compressive strength increased up to 100 MPa. The presence of transverse reinforcement around spliced bars had pronounced effect on increasing the ultimate load, the ultimate deflection, and the displacement ductility. The prediction of maximum steel stresses for spliced bars using ACI 318-05 building code was compared with the experimental results. The comparison showed that the effect of transverse reinforcement around spliced bars has to be considered into the design equations for lap splice length in high strength concrete beams.
Keywords: Ductility, high strength concrete, tension lap splice, transverse reinforcement, steel stresses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47121294 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection
Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar
Abstract:
In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.
Keywords: High strength concrete, beam-column connection, FRP, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8231293 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber
Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria
Abstract:
Bio-composites derived from plant fiber and/or bioderived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based composites. In this research, the bio phenol-formaldehyde (bio-PF) was used as a matrix and oil palm empty fruit bunch fiber (EFB) as reinforcement. The matrix was synthesized via liquefaction and condensation to enhance the combination of phenol and formaldehyde, during the process. Then, the bio-PF was mixed with different percentage of EFB (5%, 10%, 15% and 20%) and molded at 180oC. The samples that viewed under scanning electron microscopy (SEM) showed an excellent wettability and interaction between EFB and matrix. Samples of 10% EFB gave the optimum properties of impact and hardness meanwhile sample 15% of EFB gave the highest reading of flexural modulus (MOE) and flexural strength (MOR). For thermal stability analysis, it was found that the weight loss and the activation energy (Ea) of the bio-composites samples were decreased as the filler content increased.
Keywords: EFB, liquefaction, phenol formaldehyde, lignin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171292 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars
Authors: Shahrad Ebrahimzadeh
Abstract:
Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized, and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and higher structural efficiency than solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCBs) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs further investigation is replacing steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of Glass Fiber Reinforced Polymer (GFRP) bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.
Keywords: Design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611291 Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin
Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou
Abstract:
Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10% of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.
Keywords: Calorimetry, cement, metakaolin fineness, rheology, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26981290 Experimental Study of Strength Recovery from Residual Strength on Kaolin Clay
Authors: Deepak R. Bhat, Netra P. Bhandery, Ryuichi Yatabe
Abstract:
Strength recovery effect from the residual-state of shear is not well address in scientific literature. Torsional ring shear strength recovery tests on kaolin clay using rest periods up to 30 days are performed at the effective normal stress 100kN/m2. Test results shows that recovered strength measured in the laboratory is slightly noticeable after rest period of 3 days, but recovered strength lost after very small shear displacement. This paper mainly focused on the strength recovery phenomenon from the residual strength of kaolin clay based on torsional ring shear test results. Mechanisms of recovered strength are also discussed.
Keywords: Kaolin clay, Residual strength, Strength recovery, Torsional ring shear test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24741289 SELF-Cured Alkali Activated Slag Concrete Mixes- An Experimental Study
Authors: Mithun B. M., Mattur C. Narasimhan
Abstract:
Alkali Activated Slag Concrete (AASC) mixes are manufactured by activating ground granulated blast furnace slag (GGBFS) using sodium hydroxide and sodium silicate solutions. The aim of the present experimental research was to investigate the effect of increasing the dosages of sodium oxide (Na2O, in the range of 4 to 8%) and the activator modulus (Ms) (i.e. the SiO2/Na2O ratio, in the range of 0.5 to 1.5) of the alkaline solutions, on the workability and strength characteristics of self-cured (air-cured) alkali activated Indian slag concrete mixes. Further the split tensile and flexure strengths for optimal mixes were studied for each dosage of Na2O.It is observed that increase in Na2O concentration increases the compressive, split-tensile and flexural strengths, both at the early and later-ages, while increase in Ms, decreases the workability of the mixes. An optimal Ms of 1.25 is found at various Na2O dosages. No significant differences in the strength performances were observed between AASCs manufactured with alkali solutions prepared using either of potable and de-ionized water.
Keywords: Alkali activated slag, self-curing, strength characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30311288 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures
Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková
Abstract:
This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.
Keywords: Expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35951287 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars
Authors: Krzysztof Zieliński, Dariusz Kierzek
Abstract:
The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.
Keywords: Alumina cement, immediate setting, compression strength, adhesion to substrate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601286 Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context
Authors: Shrikant Charhate, Gayatri Deshpande
Abstract:
Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability.
Keywords: Connections, geotextile, permeable ACB, pavements, stone base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8891285 Determination of the Thermophysical Characteristics of the Composite Material Clay Cement Paper
Authors: A. Ouargui, N. Belouaggadia, M. Ezzine
Abstract:
In Morocco, the building sector is largely responsible for the evolution of energy consumption. The control of energy in this sector remains a major issue despite the rise of renewable energies. The design of an environmentally friendly building requires mastery and knowledge of energy and bioclimatic aspects. This implies taking into consideration of all the elements making up the building and the way in which energy exchanges take place between these elements. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. The aim of this work is to provide some solutions to reduce energy consumption while maintaining thermal comfort in the building. The objective of our work is to present an experimental study on the characterization of local materials used in the thermal insulation of buildings. These are paper recycling stabilized with cement and clay. The thermal conductivity of these materials, which were constituted based on sand, clay, cement; water, as well as treated paper, was determined by the guarded-hot-plate method. It involves the design of two materials that will subsequently be subjected to thermal and mechanical tests to determine their thermophysical properties. The results show that the thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. Measurements of mechanical properties such as flexural strength have shown that the enrichment of the studied material with paper makes it possible to reduce the flexural strength by 20% while optimizing the conductivity.
Keywords: Building, composite material, insulation, thermal conductivity, paper residue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6361284 Evaluation of Hand Grip Strength and EMG Signal on Visual Reaction
Authors: Sung-Wook Shin, Sung-Taek Chung
Abstract:
Hand grip strength has been utilized as an indicator to evaluate the motor ability of hands, responsible for performing multiple body functions. It is, however, difficult to evaluate other factors (other than hand muscular strength) utilizing the hand grip strength only. In this study, we analyzed the motor ability of hands using EMG and the hand grip strength, simultaneously in order to evaluate concentration, muscular strength reaction time, instantaneous muscular strength change, and agility in response to visual reaction. In results, the average time (and their standard deviations) of muscular strength reaction EMG signal and hand grip strength was found to be 209.6 ± 56.2 ms and 354.3 ± 54.6 ms, respectively. In addition, the onset time which represents acceleration time to reach 90% of maximum hand grip strength, was 382.9 ± 129.9 ms.
Keywords: Hand grip strength, EMG, visual reaction, endurance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30011283 Possible Utilization of Cigarette Butts in Light- Weight Fired Clay Bricks
Authors: Aeslina Abdul Kadir, Abbas Mohajerani
Abstract:
Over a million tonnes of cigarette butts (CBs) are produced worldwide annually. These CBs accumulate in the environment due to the poor biodegradability of the cellulose acetate filters and pose a serious environmental risk. This paper presents some of the results from a continuing study on recycling CBs into fired clay bricks. Properties including compressive strength, flexural strength, density, water absorption and thermal conductivity of fired clay bricks are reported and discussed. Furthermore, leaching of heavy metals from the manufactured clay bricks was tested. The results show that the density of fired bricks was reduced by about 8 – 30 %, depending on the percentage of CBs incorporated into the raw materials. The compressive strength of bricks tested was 12.57, 5.22 and 3.00 MPa for 2.5, 5.0 and 10 % CB content respectively. Water absorption and initial rate of absorption values increased as density, and hence porosity, of bricks decreased with increasing CB volume. The leaching test results revealed trace amounts of heavy metals.
Keywords: Cigarette butts, Fired clay bricks, Light bricks, Recycling waste, Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44671282 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based On Liquid Glass
Authors: M. Zelinkova, M. Ondova
Abstract:
Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.Keywords: Alkali activation, geopolymers, fly ash, particle fineness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20631281 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks
Authors: V. Revathi, J. Thaarrini, M. Venkob Rao
Abstract:
This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA: GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.
Keywords: Bottom ash, GGBS, alkali activation, paver block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40371280 The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles
Authors: Lucie Vodova, Radomir Sokolar, Jitka Hroudova
Abstract:
Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste.
Keywords: Ceramic tiles, class C fly ash, calcite waste, calcium oxide, anorthite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36551279 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.
Keywords: Concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, direct tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20741278 Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members
Authors: J.-Y. Lee, H.-S. Lim, S.-E. Kim
Abstract:
Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa.
Keywords: PSC members, shear failure mode, high strength stirrups, high strength concrete, shear behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13931277 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7
Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam
Abstract:
Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.
Keywords: Joint shear strength, reversed cyclic loading, seismic codes, wide beam-column joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10721276 The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams
Authors: Yasmin Z. Murad, Haneen M. Abdl-Jabbar
Abstract:
An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams.
Keywords: Basalt fiber, steel fiber, reinforced concrete beams, flexural behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7201275 Effects of Coupling Agent on the Properties of Henequen Microfiber (NF) Filled High Density Polyethylene (HDPE) Composites
Authors: Pravin Gaikwad, Prakash Mahanwar
Abstract:
The main objective of incorporating natural fibers such as Henequen microfibers (NF) into the High Density Polyethylene (HDPE) polymer matrix is to reduce the cost and to enhance the mechanical as well as other properties. The Henequen microfibers were chopped manually to 5-7mm in length and added into the polymer matrix at the optimized concentration of 8 wt %. In order to facilitate the link between Henequen microfibers (NF) and HDPE matrix, coupling agent such as Glycidoxy (Epoxy) Functional Methoxy Silane (GPTS) at various concentrations from 0.1%, 0.3%, 0.5%, 0.7%, 0.9% and 1% by weight to the total fibers were added. The tensile strength of the composite increased marginally while % elongation at break of the composites decreased with increase in silane loading by wt %. Tensile modulus and stiffness observed increased at 0.9 wt % GPTS loading. Flexural as well as impact strength of the composite decreased with increase in GPTS loading by weight %. Dielectric strength of the composite also found increased marginally up to 0.5wt % silane loading and thereafter remained constant.
Keywords: Henequen microfibers (NF), polymer composites, HDPE, coupling agent, GPTS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24251274 Structural Behaviour of Partially Filled Steel Grid Composite Deck
Authors: Hyun-Seop Shin, Chin-Hyung Lee, Ki-Tae Park
Abstract:
In order to apply partially filled steel grid composite deck as the horizontal supporting structure of various kinds of infrastructures, the variation of its flexural strength according to design parameters such as cross and longitudinal bars constituting the steel grid and the type of shear connection is evaluated and compared experimentally. The result shows that the design sensitivity of the deck to the spacing of the cross bars is insignificant in the case of structure with low risk of punching failure or without load distribution problem. By means of shear connection composed by transverse rebar and longitudinal bar without additional shear stud bolts, the complete interaction between steel grid and concrete slab is able to be achieved and the composite deck can develop its bending resistance capacity.Keywords: bending strength, composite action, shear connection, steel grid composite deck
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16221273 Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints
Authors: Ivan Balázs, Jindřich Melcher
Abstract:
Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.Keywords: Beam, buckling, numerical analysis, stability, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29151272 Effect of the Truss System to the Flexural Behavior of the External Reinforced Concrete Beams
Authors: Rudy Djamaluddin, Yasser Bachtiar, Rita Irmawati, Abd. Madjid Akkas, Rusdi Usman Latief
Abstract:
The aesthetic qualities and the versatility of reinforced concrete have made it a popular choice for many architects and structural engineers. Therefore, the exploration of natural materials such as gravels and sands as well as lime-stone for cement production is increasing to produce a concrete material. The exploration must affect to the environment. Therefore, the using of the concrete materials should be as efficient as possible. According to its natural behavior of the concrete material, it is strong in compression and weak in tension. Therefore the contribution of the tensile stresses of the concrete to the flexural capacity of the beams is neglected. However, removing of concrete on tension zone affects to the decreasing of flexural capacity. Introduce the strut action of truss structures may an alternative to solve the decreasing of flexural capacity. A series of specimens were prepared to clarify the effect of the truss structures in the concrete beams without concrete on the tension zone. Results indicated that the truss system is necessary for the external reinforced concrete beams. The truss system of concrete beam without concrete on tension zone (BR) could develop almost same capacity to the normal beam (BN). It can be observed also that specimens BR has lower number of cracks than specimen BN. This may be caused by the fact that there was no bonding effect on the tensile reinforcement on specimen BR to distribute the cracks.
Keywords: External Reinforcement, Truss, Concrete Beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22621271 On the Fatigue Behavior of a Triphasic Composite
Authors: G. Minak, D. Ghelli, A. Zucchelli
Abstract:
This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.
Keywords: Bending fatigue, epoxy resin, glass fiber, montmorillonite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24521270 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading
Authors: Emre Kara, Şura Karakuzu, Ahmet F. Geylan, Metehan Demir, Kadir Koç, Halil Aykul
Abstract:
The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum alloy foam core, the skins made of three different types of fabrics and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances by aiming the analyses of their flexural performance in terms of absorbed energy, peak force values and collapse mechanisms. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force and absorbed energy values, collapse mechanisms and adhesion quality. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.
Keywords: Adhesive and adhesion, Aluminum foam, Bending, Collapse mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217