The material selection in the design of the sandwich

\r\nstructures is very crucial aspect because of the positive or negative

\r\ninfluences of the base materials to the mechanical properties of the

\r\nentire panel. In the literature, it was presented that the selection of the

\r\nskin and core materials plays very important role on the behavior of

\r\nthe sandwich. Beside this, the use of the correct adhesive can make

\r\nthe whole structure to show better mechanical results and behavior.

\r\nIn the present work, the static three-point bending tests were

\r\nperformed on the sandwiches having an aluminum alloy foam core,

\r\nthe skins made of three different types of fabrics and two different

\r\ncommercial adhesives (flexible polyurethane and toughened epoxy

\r\nbased) at different values of support span distances by aiming the

\r\nanalyses of their flexural performance in terms of absorbed energy,

\r\npeak force values and collapse mechanisms. The main results of the

\r\nflexural loading are: force-displacement curves obtained after the

\r\nbending tests, peak force and absorbed energy values, collapse

\r\nmechanisms and adhesion quality. The experimental results presented

\r\nthat the sandwiches with epoxy based toughened adhesive and the

\r\nskins made of S-Glass Woven fabrics indicated the best adhesion

\r\nquality and mechanical properties. The sandwiches with toughened

\r\nadhesive exhibited higher peak force and energy absorption values

\r\ncompared to the sandwiches with flexible adhesive. The use of these

\r\nsandwich structures can lead to a weight reduction of the transport

\r\nvehicles, providing an adequate structural strength under operating

\r\nconditions.<\/p>\r\n","references":"[1] W. J. Cantwell, G. R. Villanueva, \u201cThe high velocity impact response of\r\ncomposite and FML-reinforced sandwich structures\u201d, Composite\r\nScience and Technology, vol. 64, pp. 35-54, 2004.\r\n[2] J. Banhart, \u201cManufacture, characterisation and application of cellular\r\nmetals and metal foams\u201d, Progress in Material Science, vol. 46, no. 6,\r\npp. 559\u2013632, 2001.\r\n[3] H. P. Degischer, B. Kriszt, Handbook of cellular metals: production,\r\nprocessing, applications. Weinheim: Wiley-VCH Verlag, 2002, ch. 4.\r\n[4] V. Crupi, G. Epasto, E. Guglielmino, \u201cComparison of aluminium\r\nsandwiches for lightweight ship structures: honeycomb vs. foam\u201d,\r\nMarine Structures, vol. 30, pp. 74 \u2013 96, 2013.\r\n[5] E. Kara, V. Crupi, G. Epasto, E. Guglielmino, H. Aykul, \u201cLow velocity\r\nimpact response of glass fiber reinforced aluminium foam sandwich\u201d, in\r\nProc. of 15th European Conference on Composite Materials (ECCM15),\r\nVenice, 2012, pp. 1-8.\r\n[6] G. Reyes, \u201cMechanical behavior of thermoplastic FML-reinforced\r\nsandwich panels using an aluminum foam core: experiments and\r\nmodelling\u201d, Journal of Sandwich Structures and Materials, vol. 12, pp.\r\n81 \u2013 96, 2010.\r\n[7] J. Banhart, C. Schmoll, U. Neumann, \u201cLight-weight aluminium foam\r\nstructures for ships\u201d, in Proc. Conf. Materials in Oceanic Environment\r\n(Euromat \u201998), Lisbon, 1998, vol. 1, pp. 55\u201363.\r\n[8] L. J. Gibson, M. F. Ashby, Cellular solids: structure and properties.\r\nOxford: Pergamon Press, 1997.\r\n[9] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson,\r\nH. N. G. Wadley, Metal foams: a design guide. Boston: Butterworth-\r\nHeinemann, 2000.\r\n[10] T. M. McCormack, R. Miller, O. Kesler, L. J. Gibson, \u201cFailure of\r\nsandwich beams with metallic foam cores\u201d, International Journal of\r\nSolids and Structures, vol. 38, pp. 4901\u20134920, 2001.\r\n[11] H. Bart-Smith, J. Hutchinson, A. Evans, \u201cMeasurement and analysis of\r\nthe structural performance of cellular metal sandwich construction\u201d,\r\nInternational Journal of Mechanical Sciences, vol. 43, no. 8, pp. 1945\u2013\r\n1963, 2001.\r\n[12] J. Yu, E. Wang, J. Li, Z. Zheng, \u201cStatic and low-velocity impact\r\nbehaviour of sandwich beams with closed-cell aluminum foam core in\r\nthree-point bending\u201d, International Journal of Impact Engineering, vol.\r\n35 , no. 8, pp. 885\u2013894, 2008.\r\n[13] K. Mohan, Y. T. Hon, S. Idapalapati, H. P. Seow, \u201cFailure of sandwich\r\nbeams consisting of alumina face and aluminum foam core in bending\u201d,\r\nMaterials Science and Engineering:A, vol. 409, pp. 292\u2013301, 2005.\r\n[14] C. Chen, A. M. Harte, N. A. Fleck, \u201cThe plastic collapse of sandwich\r\nbeams with a metallic foam core\u201d, International Journal of Mechanical\r\nSciences, vol. 43, no. 6, pp. 1483\u20131506, 2001.\r\n[15] Y. Shenhar, Y. Frostig, E. Altus, \u201cStresses and failure patters in the\r\nbending of sandwich beams with transversely flexible cores and\r\nlaminated composite skins\u201d, Composite Structures, vol. 35, pp. 143\u2013152,\r\n1996.\r\n[16] M. Kampner, J. L. Grenestedt, \u201cOn using corrugated skins to carry shear\r\nin sandwich beams\u201d, Composite Structures, vol. 85, pp. 139\u2013148, 2007.\r\n[17] V. L. Tagarielli, N. A. Fleck, V. S. Deshpand, \u201cThe collapse response of\r\nsandwich beams with aluminium face sheets and a metal foam core in\r\nthree-point bending\u201d, in Proceedings of cellular metals and metal\r\nfoaming technology (MetFoam2003), Berlin, 2003, pp. 381\u2013386.\r\n[18] H. Bart-Smith, J. W. Hutchinson, N. A. Fleck, A. G. Evans, \u201cInfluence\r\nof imperfections on the performance of metal foam core sandwich\r\npanels\u201d, International Journal of Solids and Structures, vol. 39, pp.\r\n4999\u20135012, 2002.\r\n[19] O. Kesler, L. J. Gibson, \u201cSize effects in metallic foam core sandwich\r\nbeams\u201d, Materials Science and Engineering:A, vol. 326, no. 2, pp. 228\u2013\r\n234, 2002.\r\n[20] C. A. Steeves, N. A. Fleck, \u201cCollapse mechanism of sandwich beams\r\nwith composite faces and a foam core, loaded in three-point bending.\r\nPart I: analytical models and minimum weight design\u201d, International\r\nJournal of Mechanical Sciences, vol. 46, pp. 561\u2013583, 2004.\r\n[21] V. Crupi, R. Montanini, \u201cAluminium foam sandwiches collapse modes\r\nunder static and dynamic three-point bending\u201d, International Journal of\r\nImpact Engineering, vol. 34, pp. 509 \u2013 521, 2007.\r\n[22] J. Baumeister, J. Banhart, M. Weber, \u201cAluminium foams for transport\r\nindustry\u201d, Materials & Design, vol. 18, pp. 217-220, 1997.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 101, 2015"}