Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 69

Search results for: Alkali activators

69 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: Reactivity, water demand, alkali-activated materials, brick, bauxite, illitic clay, fly ash, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
68 Flowability and Strength Development Characteristics of Bottom Ash Based Geopolymer

Authors: Si-Hwan Kim, Gum-Sung Ryu, Kyung-Taek Koh, Jang-Hwa Lee

Abstract:

Despite of the preponderant role played by cement among the construction materials, it is today considered as a material destructing the environment due to the large quantities of carbon dioxide exhausted during its manufacture. Besides, global warming is now recognized worldwide as the new threat to the humankind against which advanced countries are investigating measures to reduce the current amount of exhausted gases to the half by 2050. Accordingly, efforts to reduce green gases are exerted in all industrial fields. Especially, the cement industry strives to reduce the consumption of cement through the development of alkali-activated geopolymer mortars using industrial byproducts like bottom ash. This study intends to gather basic data on the flowability and strength development characteristics of alkali-activated geopolymer mortar by examining its FT-IT features with respect to the effects and strength of the alkali-activator in order to develop bottom ash-based alkali-activated geopolymer mortar. The results show that the 35:65 mass ratio of sodium hydroxide to sodium silicate is appropriate and that a molarity of 9M for sodium hydroxide is advantageous. The ratio of the alkali-activators to bottom ash is seen to have poor effect on the strength. Moreover, the FT-IR analysis reveals that larger improvement of the strength shifts the peak from 1060 cm–1 (T-O, T=Si or Al) toward shorter wavenumber.

Keywords: Bottom Ash, Geopolymer mortar, Flowability, Strength Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
67 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks

Authors: V. Revathi, J. Thaarrini, M. Venkob Rao

Abstract:

This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA: GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.

Keywords: Bottom ash, GGBS, alkali activation, paver block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3979
66 High Performance Fibre Reinforced Alkali Activated Slag Concrete

Authors: A. Sivakumar, K. Srinivasan

Abstract:

The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.

Keywords: Accelerators, Alkali activators, Geopolymer, Hot air oven curing, Polypropylene fibres, Slag, Steam curing, Steel fibres.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
65 Effect of Na2O Content on Durability of Geopolymer Mortars in Sulphuric Acid

Authors: Suresh Thokchom, Partha Ghosh, Somnath Ghosh

Abstract:

This paper presents the findings of an experimental investigation to study the effect of alkali content in geopolymer mortar specimens exposed to sulphuric acid. Geopolymer mortar specimens were manufactured from Class F fly ash by activation with a mixture of sodium hydroxide and sodium silicate solution containing 5% to 8% Na2O. Durability of specimens were assessed by immersing them in 10% sulphuric acid solution and periodically monitoring surface deterioration and depth of dealkalization, changes in weight and residual compressive strength over a period of 24 weeks. Microstructural changes in the specimens were studied with Scanning electron microscopy (SEM) and EDAX. Alkali content in the activator solution significantly affects the durability of fly ash based geopolymer mortars in sulphuric acid. Specimens manufactured with higher alkali content performed better than those manufactured with lower alkali content. After 24 weeks in sulphuric acid, specimen with 8% alkali still recorded a residual strength as high as 55%.

Keywords: Alkali content, acid attack, compressive strength, geopolymer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577
64 Determination of Alkali Treatment Conditions Effects Which Influence the Variability of Kenaf Fiber Mean Cross Sectional Area

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Shahruddin Mahzan @ Mohd Zin, Saparudin Ariffin

Abstract:

Fiber cross sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions which influence kenaf bast fiber mean cross sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at 2 and 10 w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minutes. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. Cross sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross sectional area was reduced 6.77% to 29.88% after alkali treatment. From analysis of variance, it shows that interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction which was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated are decrease pattern of variability when the level was change from lower to higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes.

Keywords: Natural fiber, kenaf bast fiber bundles, alkali treatment, cross sectional area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
63 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: One-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
62 Effect of Particle Size on Alkali-Activation of Slag

Authors: E. Petrakis, V. Karmali, K. Komnitsas

Abstract:

In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.

Keywords: Alkali activated materials, compressive strength, particle size distribution, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585
61 SELF-Cured Alkali Activated Slag Concrete Mixes- An Experimental Study

Authors: Mithun B. M., Mattur C. Narasimhan

Abstract:

Alkali Activated Slag Concrete (AASC) mixes are manufactured by activating ground granulated blast furnace slag (GGBFS) using sodium hydroxide and sodium silicate solutions. The aim of the present experimental research was to investigate the effect of increasing the dosages of sodium oxide (Na2O, in the range of 4 to 8%) and the activator modulus (Ms) (i.e. the SiO2/Na2O ratio, in the range of 0.5 to 1.5) of the alkaline solutions, on the workability and strength characteristics of self-cured (air-cured) alkali activated Indian slag concrete mixes. Further the split tensile and flexure strengths for optimal mixes were studied for each dosage of Na2O.It is observed that increase in Na2O concentration increases the compressive, split-tensile and flexural strengths, both at the early and later-ages, while increase in Ms, decreases the workability of the mixes. An optimal Ms of 1.25 is found at various Na2O dosages. No significant differences in the strength performances were observed between AASCs manufactured with alkali solutions prepared using either of potable and de-ionized water.

Keywords: Alkali activated slag, self-curing, strength characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2897
60 Hydrogels Based on Carrageenan Extracted from Kappaphycus alvarezii

Authors: S. Distantina, Rochmadi, M. Fahrurrozi, Wiratni

Abstract:

Preparation of hydrogel based on carrageenan extracted from Kappaphycus alvarezii was conducted with film immersion in glutaraldehyde solution (GA 4%w/w) for 2min and then followed by thermal curing at 110°C for 25min. The method of carrageenan recovery strongly determines the properties of crosslinked carrageenan. Hydrogel obtained from alkali treated carrageenan showed higher swelling ability compared to hydrogel from nonalkali treated carrageenan. Hydrogel from alkali treated showed the ability of sensitive to pH media.

Keywords: Hydrogel, carrageenan, swelling, alkali treated.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233
59 Activation of Prophenoloxidase during Bacterial Injection into the Desert Locust, Schistocerca Gregaria

Authors: Shaiemaa, A. Momen, Dalia, A.M. Salem, Emad, M.S. Barakat, Mohamed, S. Salama

Abstract:

The present study has been conducted to characterize the prophenoloxidase (PPO) system of the desert locust, Schistocerca gregaria following injection of Bacillus thuringiensis kurstaki (Bt). The bulk of PPO system was associated with haemocytes and a little amount was found in plasma. This system was activated by different activators such as laminarin, lipopolysaccharide (LPS) and trypsin suggesting that the stimulatory mechanism may involve an enzyme cascade of one or more associated molecules. These activators did not activate all the molecules of the cascade. Presence of phenoloxidase activity (PO) coincides with the appearance of protein band with molecular weight (MW) 70.154 KD (Kilo Dalton).

Keywords: Schistocerca gregaria, haemolymph, proteins, prophenoloxidase system, phenoloxidase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
58 A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time Delay Gene Networks

Authors: Ankit Agrawal, Ankush Mittal

Abstract:

A gene network gives the knowledge of the regulatory relationships among the genes. Each gene has its activators and inhibitors that regulate its expression positively and negatively respectively. Genes themselves are believed to act as activators and inhibitors of other genes. They can even activate one set of genes and inhibit another set. Identifying gene networks is one of the most crucial and challenging problems in Bioinformatics. Most work done so far either assumes that there is no time delay in gene regulation or there is a constant time delay. We here propose a Dynamic Time- Lagged Correlation Based Method (DTCBM) to learn the gene networks, which uses time-lagged correlation to find the potential gene interactions, and then uses a post-processing stage to remove false gene interactions to common parents, and finally uses dynamic correlation thresholds for each gene to construct the gene network. DTCBM finds correlation between gene expression signals shifted in time, and therefore takes into consideration the multi time delay relationships among the genes. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae gene expression data and comparison with other methods indicate that it has a better performance.

Keywords: Activators, correlation, dynamic time-lagged correlation based method, inhibitors, multi-time delay gene network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
57 Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions

Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran

Abstract:

This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sands and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performances of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at 10% and 20% replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at 20% replacement levels was effective in mitigating expansions.

Keywords: Alkali silica reaction, natural zeolite, durability, expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
56 Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete

Authors: Muhammet M. Erdem, Erdoğan Özbay, Ibrahim H. Durmuş, Mustafa Erdemir, Murat Bikçe, Müzeyyen Balçıkanlı

Abstract:

In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO2/Na2O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed.

Keywords: Alkali activation, slag, rheology, yield stress, plastic viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
55 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods

Authors: Yi-Jie Lin, Jyh-Cherng Chen

Abstract:

The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.

Keywords: Alkali fusion, hydrothermal, fly ash, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
54 Compressive Strength and Microstructure of Hybrid Alkaline Cements

Authors: Z. Abdollahnejad, P. Torgal, J. Barroso Aguiar

Abstract:

Publications on the field of alkali-activated binders, state that this new material is likely to have high potential to become an alternative to Portland cement. Classical alkali-activated cements could be made more eco-efficient if the use of sodium silicate is avoided. Besides, most alkali-activated cements suffer from severe efflorescence originated by the fact that alkaline and/or soluble silicates that are added during processing cannot be totally consumed. This paper presents experimental results on hybrid alkaline cements. Compressive strength results and efflorescence’s observations show that the new mixes already analyzed are promising. SEM results show that no traditional porous ITZ was detected in these binders.

Keywords: Hybrid alkaline cements, Compressive strength, Efflorescence, SEM, ITZ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
53 Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites

Authors: Srinivasa C. V., Bharath K. N.

Abstract:

Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principal benefits: moderate strength and stiffness, low cost, and being an environmental friendly, degradable, and renewable material. A study has been carried out to evaluate impact properties of composites made by areca fibers reinforced urea formaldehyde, melamine urea formaldehyde and epoxy resins. The extracted areca fibers from the areca husk were alkali treated with potassium hydroxide (KOH) to obtain better interfacial bonding between fiber and matrix. Then composites were produced by means of compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), and fiber loading percentages (50% and 60% by weight). The developed areca fiber reinforced composites were then characterized by impact test. The results show that, impact strength increase with increase in the loading percentage. It is observed that, treated areca fiber reinforcement increases impact strength when compared to untreated areca fiber reinforcement.

Keywords: Lignocellulosic Fibers Composites, Areca Fibers, Alkali Treatment, Impact Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3733
52 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity

Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş

Abstract:

In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.

Keywords: Alkali activation, slag, rapid chloride permeability, water absorption capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
51 Microcrystalline Cellulose (MCC) From Oil Palm Empty Fruit Bunch (EFB) Fiber via Simultaneous Ultrasonic and Alkali Treatment

Authors: Ridzuan Ramli, Norhafzan Junadi, Mohammad D.H. Beg, Rosli M. Yunus

Abstract:

In this study, microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (EFB) cellulose which was earlier isolated from oil palm EFB fibre. In order to isolate the cellulose, the chlorination method was carried out. Then, the MCC was prepared by simultaneous ultrasonic and alkali treatment from the isolated α-cellulose. Based on mass balance calculation, the yields for MCC obtained from EFB was 44%. For fiber characterization, it is observed that the chemical composition of the hemicellulose and lignin for all samples decreased while composition for cellulose increased. The structural property of the MCC was studied by X-ray diffraction (XRD) method and the result shows that the MCC produced is a cellulose-I polymorph, with 73% crystallinity.

Keywords: Oil palm empty fruit bunch, microcrystalline cellulose, ultrasonic, alkali treatment, X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3897
50 Biodiesel Production from Waste Chicken Fatbased Sources

Authors: Kambiz Tahvildari A., Narges Davari B., Mohammadreza Allahgholi Ghasri C, MasoomehBehrourzinavid D

Abstract:

Chicken fat was employed as a feedstock for producing of biodiesel by trasesterification reaction with methanol and alkali catalyst (KOH). In this study chicken fat biodiesel with 1.4% free fatty acid, methanol and various amount of potassium hydroxide for 2 hour were studied. The progression of reaction and conversion of triglycerides to methyl ester were checked by IR spectrum method.

Keywords: Alkali catalyst, biodiesel, chicken fat, transesterification reaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770
49 Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature

Authors: Aswin Kumar Krishnan, Yat Choy Wong, Reiza Mukhlis, Zipeng Zhang, Arul Arulrajah

Abstract:

The continuous increase in vehicle uptake escalates the number of rubber tyres waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of crumb rubber in clay roof tiles. The properties of roof tiles composed of clay, crumb rubber, NaOH, and Na2SiO3 with 10 wt.% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50 °C for 72 hours, followed by a higher heating temperature of 200 °C for 24 hours. The effect of crumb rubber aggregates as a substitution for the raw clay materials were investigated by varying their concentration from 0 wt.% to 2.5 wt.%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5 wt.% and 1 wt.%, while cracks and larger porosity were found at higher crumbs concentration. Water absorption, and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles.

Keywords: Crumb rubber, clay, roof tiles, alkaline activators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85
48 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture

Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou

Abstract:

Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.

Keywords: Concrete, mineral admixture, hydration, structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
47 Geochemistry of Coal Ash in the Equatorial Wet Disposal System Environment

Authors: Kolay P. K., Singh H.

Abstract:

The coal utilization in thermal power plants in Malaysia has increased significantly which produces an enormous amount of coal combustion by-product (CCBP) or coal ash and poses severe disposal problem. As each coal ash is distinct, this study presents the geochemistry of the coal ash, in particular fly ash, produced from the combustion of local coal from Kuching Sarawak, Malaysia. The geochemical composition of the ash showed a high amount of silica, alumina, iron oxides and alkalies which was found to be a convenient starting material for the hydrothermal synthesis of zeolites with the higher Na2O percentage being a positive factor for its alkaline activation; while the mineral phases are mainly quartz, mullite, calcium oxide, silica, and iron oxide hydrate. The geochemical changes upon alkali activation that can be predicted in a similar type of ash have been described in this paper. The result shows that this particular ash has a good potential for a high value industrial product like zeolites upon alkali activation.

Keywords: Coal ash, chemical composition, mineralogical composition, alkali activation, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
46 Alkali Silica Reaction Mitigation and Prevention Measures for Arkansas Local Aggregates

Authors: Amin Kamal Akhnoukh, Lois Zaki Kamel, Magued Mourad Barsoum

Abstract:

The objective of this research is to mitigate and prevent the alkali silica reactivity (ASR) in highway construction projects. ASR is a deleterious reaction initiated when the silica content of the aggregate reacts with alkali hydroxides in cement in the presence of relatively high moisture content. The ASR results in the formation of an expansive white colored gel-like material which forms the destructive tensile stresses inside hardened concrete. In this research, different types of local aggregates available in the State of Arkansas were mixed and mortar bars were poured according to the ASTM specifications. Mortar bars expansion was measured versus time and aggregates with potential ASR problems were detected. Different types of supplementary cementitious materials (SCMs) were used in remixing mortar bars with highly reactive aggregates. Length changes for remixed bars proved that different types of SCMs can be successfully used in reducing the expansive effect of ASR. SCMs percentage by weight is highly dependent on the SCM type. The result of this study will help avoiding future losses due to ASR cracking in construction project and reduce the maintenance, repair, and replacement budgets required for highways network.

Keywords: Alkali Silica Reaction, Aggregates, Moisture, Cracks, Mortar Bar Test supplementary cementitious materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
45 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors

Authors: G. Bumanis, D. Bajare

Abstract:

With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.

Keywords: Alkaline material, buffer capacity, biogas production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
44 Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites

Authors: Ahmed Mudhafar Hashim, Aseel Mahmood Abdullah

Abstract:

The present work introduced a green composite consisting of corn natural fiber of constant concentration of 10% by weight incorporation with poly methyl methacrylate matrix biomaterial prepared by hand lay-up technique. Corn natural fibers were treated with two concentrations of sodium hydroxide solution (3% and 5%) with different immersed time (1.5 and 3 hours) at room temperature. The fracture toughness test of untreated and alkali treated corn fiber composites were performed. The effect of chemically treated on fracture properties of composites has been analyzed using Fourier transform infrared (FTIR) spectroscopy. The experimental results showed that the alkali treatment improved the fracture properties in terms of plane strain fracture toughness KIC. It was found that the plane strain fracture toughness KIC increased by up to 62% compared to untreated fiber composites. On the other hand, increases in both concentrations of alkali solution and time of soaking to 5% NaOH and 3 hours, respectively reduced the values of KIC lower than the value of the unfilled material.

Keywords: green composites, fracture toughness, corn natural fiber, Bio-PMMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441
43 A New Strategy for Minimizing Precipitations during ASP Flooding in Carbonate Reservoirs

Authors: Khaled Abdalla Elraies, Shuaib Ahmed

Abstract:

A large quantity of world-s oil reserves exists in carbonate reservoirs. Carbonate reservoirs are very sensitive to chemical enhanced oil recovery process because of containing large amount of calcite, dolomite and calcium sulfate minerals. These minerals cause major obstacles during alkali-surfactant-polymer (ASP) flooding. Alkali reacts with these minerals and form undesired precipitations which plug effective porous openings, reduce permeability and cause scale occurrence at the wellbore. In this paper, a new chemical combination consists of acrylic acid and alkali was used to minimize precipitation problem during ASP flooding. A series of fluid-fluid compatibility tests were performed using acrylic acid and different concentrations of alkaline. Two types of alkalis namely; sodium carbonate and sodium metaborate were screened. As a result, the combination of acrylic acid and sodium carbonate was not effective in preventing calcium and magnesium precipitations. However, acrylic acid and sodium metaborate showed promising results for keeping all solutions without any precipitations. The ratio of acrylic acid to sodium metaborate of 0.7:1.0 was found to be optimum for achieving a compatible solution for 30 days at 80oC.

Keywords: Fluid-fluid compatibility test, Carbonate reservoirs, Precipitations and ASP flooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
42 Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5

Authors: Jianwen Li, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying

Abstract:

Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.

Keywords: Alkali treatment, HZSM-5, methanol-to-propylene, synthesis condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
41 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay failure of repair mortar, and thus, provide sufficient compatibility. Hence, this work presents a study on suitability of WTRAA-based materials as mortars for repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as alkaline activator, and different gradation of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates promising application of WTRAA mortars in practical repairs of concrete structures.

Keywords: Alkali-activated mortars, concrete repair, mortar compatibility flexural strength, waste tire rubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334
40 Characteristic on Compressive Strength of Blast Slag and Fly Ash Hybrid Geopolymer Mortar

Authors: G. S. Ryu, K. T. Koh, H. Y. Kim, G. H. An, D. W. Seo

Abstract:

Geopolymer mortar is produced by alkaline activation of pozzolanic materials such as fly ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Its unique reaction pathway facilitates rapid strength development in comparison with hydration of ordinary Portland cement (OPC). Geopolymer can be fabricated using various types and dosages of alkali-activator, which effectively gives a wider control over the performance of the final product. The present study investigates the effect of types of precursors and curing conditions on the fresh state and strength development characteristics of geopolymers, thereby comparatively exploring the effect of precursors from various sources of origin. The obtained result showed that the setting time and strength development of the specimens with the identical mix proportion but different precursors displayed significant variations.

Keywords: Alkali-activated material, blast furnace slag, fly ash, Flowability, strength development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206