Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin

Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou

Abstract:

Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10% of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.

Keywords: Calorimetry, cement, metakaolin fineness, rheology, strength.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100334

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654

References:


[1] J. A. Kostuch, G.V. Walters, T. R. Jones, “High performance concretes incorporating metakaolin - a review,” in: R. K. Dhir, M. R. Jones (Eds.), Concrete 2000, vol. 2, E&FN Spon, London, 1993, pp. 1799– 1811.
[2] M. H. Zhang, V. M. Malhotra, Cem. Concr. Res., vol. 25, 1995, pp. 1713-25.
[3] Gruber, K.A., Sarkar, S.L. World Cem., vol. 2, 1996, pp. 78-80.
[4] R. F. Feldman, Cem. Concr. Res., vol. 16, 1986, pp. 31.
[5] S. Wild, J. Khatib, Cem. Concr. Res., vol. 28, No. 6, 1998, pp. 803–809.
[6] A. Goldman, A. Bentur, Adv. Cem. Based Mater., vol. 1, 1994, pp. 209– 215.
[7] A. H. Asbridge, G. A. Chadbourn, C. L. Page, Cem. Concr. Res., vol. 31, 2001, pp. 1567–1572.
[8] J. M. Gaidis, E. M. Gartner, Hydration mechanisms, II in J. Skalny, S. Mindess (eds.), Materials Science of Concrete, vol. 2, American Ceramic Society, Westerville, OH, 1989, pp. 95-125.
[9] N. Tenoutasse, Proceedings of the Fifth International Symposium on the Chemistry of Cement, Volume II, The Cement association of Japan, Tokyo, Japan, 1968, pp. 372-378.
[10] J. W. Bullard, H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. Schweitzer, K. L. Scrivener, J. J. Thomas, Cem. Concr. Res., vol. 41, 2011, pp. 1208-1223.
[11] E. Gallucci, P. Mathur, K.L. Scrivener, Cem. Concr. Res., vol. 40, 2010, pp. 4-13.
[12] S. Wild, J. Khatib, A. Jones, Cem. Concr. Res., vol. 26, 1996, pp. 1537- 1544.
[13] J. M. Justice, K. E. Kurtis, ASCE J. Mater. Civ. Eng., vol. 19 (9), 2007, pp. 762 –771.
[14] M. Frías, M. I. Sánchez de Rojas, J. Cabrera, Cem. Concr. Res., vol. 30, 2000, pp. 209–216.
[15] X. Qian, Z. Li, Cem. Concr. Res., vol. 31, 2001, pp. 1607–1611.
[16] L. Courard, A. Darimont, M. Schouterden, F. Ferauche, X. Willem, R. Degeimbre, Cem. Concr. Res., vol. 33, 2003, pp. 1473–1479.
[17] F. Cassagnabère, P. Diederich, M. Mouret, G. Escadeillas, M. Lachemi, “Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state,” Cem. Concr. Comp., vol. 37, 2013, 95-107.