Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints

Authors: Ivan Balázs, Jindřich Melcher

Abstract:

Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.

Keywords: Beam, buckling, numerical analysis, stability, steel.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107185

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918

References:


[1] V. Březina, Buckling Resistance of Metal Bars and Beams (Vzpěrná únosnost kovových prutů a nosníků). Prague: State Publishing of Technical Literature, 1962.
[2] V. Z. Vlasov, Thin-Walled Elastic Bars (Tenkostěnné pružné pruty). Prague: Czechoslovak Academy of Sciences Publishing, 1962.
[3] ČSN EN 1993-1-1, Eurocode 3: Design of Steel Structures – Part 1-1: General Rules and Rules for Buildings (Eurokód 3: Navrhování ocelových konstrukcí – Část 1-1: Obecná pravidla a pravidla pro pozemní stavby). Prague: Czech Standard Institute, 2006.
[4] A. Rattana and C. Böckmann, “Matrix methods for computing eigenvalues of Sturm-Liouville problems of order four,” Journal of Computational and Applied Mathematics, vol. 249, pp. 144–156, 2013.
[5] ANSYS® Academic Research, Release 14.0.
[6] G. Sedlacek and J. Naumes, Excerpt from the Background Document to EN 1993-1-1: Flexural buckling and lateral buckling on a common basis: Stability assessments according to Eurocode 3. Aachen: Institut und Lehrstuhl für Stahlbau und Leichtmetallbau, 2008.
[7] R. Kindmann and J. Laumann, “Determination of eigenvalues and modal shapes for members and frames (Ermittlung von Eigenwerten für Stäbe und Stabwerke),” Stahlbau, vol. 73, pp. 26–36, 2004.
[8] V. Vondrák and V. Pospíšil, Numerical methods I (Numerické metody I). http://mi21.vsb.cz/sites/mi21.vsb.cz/files/unit/numericke_metody.pdf.
[9] A. Bjorck, “Numerics of Gram-Schmidt orthogonalization,” Linear Algebra and its Applications, vol. 197-198, pp. 297–316, 1994.