Search results for: high voltage circuit breakers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6668

Search results for: high voltage circuit breakers

5828 Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup

Authors: Abbas Ali Mahmood Karwi

Abstract:

For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)

Keywords: Multichannel analyzer, Spectrum, Energies, Fluids holdup, Image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
5827 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: Electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965
5826 Investigation of the Effect of Pressure Changes on the Gas Proportional Detector

Authors: S. M. Golgoun, S. M. Taheri

Abstract:

Investigation of radioactive contamination of personnel working in radiation centers to identify radioactive materials and then measure the potential contamination and eliminate it has always been considered. Various ways have been proposed to detect radiation so far and different detectors have been designed. A gas sealed proportional counter is one of these detectors which has special working conditions. In this research, a gas sealed detector of proportional counter type was made and then its various parameters were investigated. Some parameters are influential on their working conditions and one of these most important parameters is the internal pressure of the proportional gas-filled detector. In this experimental research, we produced software for examination and altering high voltage, registering data, and calculating efficiency of the detector. By this, we investigated different gas pressure effects on detector efficiency and proposed optimizing working conditions of this detector. After reviewing the results, we suggested a range between 20-30 mbar pressure for this gas sealed detector.

Keywords: Gas sealed detector, proportional detector, gas pressure measurement, counter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 349
5825 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: MPPT, active power filter, PV array, perturb and observe algorithm, PWM-control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
5824 Synthesis of Logic Circuits Using Fractional-Order Dynamic Fitness Functions

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
5823 Improvement in Silicon on Insulator Devices using Strained Si/SiGe Technology for High Performance in RF Integrated Circuits

Authors: Morteza Fathipour, Samira Omidbakhsh, Kimia Khodayari

Abstract:

RF performance of SOI CMOS device has attracted significant amount of interest recently. In order to improve RF parameters, Strained Si/Relaxed Si0.8Ge0.2 investigated as a replacement for Si technology .Enhancement of carrier mobility associated with strain engineering makes Strained Si a promising candidate for improving RF performance of CMOS technology. From the simulation, the cut-off frequency is estimated to be 224 GHZ, whereas in SOI at similar bias is about 188 GHZ. Therefore, Strained Si exhibits 19% improvement in cut-off frequency over similar Si counterpart. In this paper, Ion/Ioff ratio is studied as one of the key parameters in logic and digital application. Strained Si/SiGe demonstrates better Ion/Ioff characteristic than SOI, in similar channel length of 100 nm.Another important key analog figures of merit such as Early Voltage (VEA) ,transconductance vs drain current (gm /Ids) are studied. They introduce the efficiency of the devices to convert dc power into ac frequency.

Keywords: cut-off frequency, RF application, Silicon oninsulator, Strained Si/SiGe on insulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
5822 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.

Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
5821 Development of a Comprehensive Electricity Generation Simulation Model Using a Mixed Integer Programming Approach

Authors: Erik Delarue, David Bekaert, Ronnie Belmans, William D'haeseleer

Abstract:

This paper presents the development of an electricity simulation model taking into account electrical network constraints, applied on the Belgian power system. The base of the model is optimizing an extensive Unit Commitment (UC) problem through the use of Mixed Integer Linear Programming (MILP). Electrical constraints are incorporated through the implementation of a DC load flow. The model encloses the Belgian power system in a 220 – 380 kV high voltage network (i.e., 93 power plants and 106 nodes). The model features the use of pumping storage facilities as well as the inclusion of spinning reserves in a single optimization process. Solution times of the model stay below reasonable values.

Keywords: Electricity generation modeling, Unit Commitment(UC), Mixed Integer Linear Programming (MILP), DC load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
5820 Leakage Reduction ONOFIC Approach for Deep Submicron VLSI Circuits Design

Authors: Vijay Kumar Sharma, Manisha Pattanaik, Balwinder Raj

Abstract:

Minimizations of power dissipation, chip area with higher circuit performance are the necessary and key parameters in deep submicron regime. The leakage current increases sharply in deep submicron regime and directly affected the power dissipation of the logic circuits. In deep submicron region the power dissipation as well as high performance is the crucial concern since increasing importance of portable systems. Number of leakage reduction techniques employed to reduce the leakage current in deep submicron region but they have some trade-off to control the leakage current. ONOFIC approach gives an excellent agreement between power dissipation and propagation delay for designing the efficient CMOS logic circuits. In this article ONOFIC approach is compared with LECTOR technique and output results show that ONOFIC approach significantly reduces the power dissipation and enhance the speed of the logic circuits. The lower power delay product is the big outcome of this approach and makes it an influential leakage reduction technique.

Keywords: Deep submicron, Leakage Current, LECTOR, ONOFIC, Power Delay Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
5819 Design of a Low Power Compensated 90nm RF Multiplier with Improved Isolation Characteristics for a Transmitted Reference Receiver Front End

Authors: Apratim Roy, A. B. M. H. Rashid

Abstract:

In this paper, a double balanced radio frequency multiplier is presented which is customized for transmitted reference ultra wideband (UWB) receivers. The multiplier uses 90nm model parameters and exploits compensating transistors to provide controllable gain for a Gilbert core. After performing periodic and quasiperiodic non linear analyses the RF mixer (multiplier) achieves a voltage conversion gain of 16 dB and a DSB noise figure of 8.253 dB with very low power consumption. A high degree of LO to RF isolation (in the range of -94dB), RF to IF isolation (in the range of -95dB) and LO to IF isolation (in the range of -143dB) is expected for this design with an input-referred IP3 point of -1.93 dBm and an input referred 1 dB compression point of -10.67dBm. The amount of noise at the output is 7.7 nV/√Hz when the LO input is driven by a 10dBm signal. The mixer manifests better results when compared with other reported multiplier circuits and its Zero-IF performance ensures its applicability as TR-UWB multipliers.

Keywords: UWB, Transmitted Reference, Controllable Gain, RFMixer, Multiplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
5818 Separation of Manganese and Cadmium from Cobalt Electrolyte Solution by Solvent Extraction

Authors: Shafiq Alam, Mirza Hossain, Hesam Hassan Nejad

Abstract:

Impurity metals such as manganese and cadmium from high-tenor cobalt electrolyte solution were selectively removed by solvent extraction method using Co-D2EHPA after converting the functional group of D2EHPA with Co2+ ions. The process parameters such as pH, organic concentration, O/A ratio, kinetics etc. were investigated and the experiments were conducted by batch tests in the laboratory bench scale. Results showed that a significant amount of manganese and cadmium can be extracted using Co-D2EHPA for the optimum processing of cobalt electrolyte solution at equilibrium pH about 3.5. The McCabe-Thiele diagram, constructed from the extraction studies showed that 100% impurities can be extracted through four stages for manganese and three stages for cadmium using O/A ratio of 0.65 and 1.0, respectively. From the stripping study, it was found that 100% manganese and cadmium can be stripped from the loaded organic using 0.4 M H2SO4 in a single contact. The loading capacity of Co-D2EHPA by manganese and cadmium were also investigated with different O/A ratio as well as with number of stages of contact of aqueous and organic phases. Valuable information was obtained for the designing of an impurities removal process for the production of pure cobalt with less trouble in the electrowinning circuit.

Keywords: Manganese, Cadmium, Cobalt, D2EHPA, Solvent extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888
5817 Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation

Authors: Ju-Na Hwang, Yong-Jun Park, Min-Hae Park, Kee-Joe Lim

Abstract:

Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, high voltage direct current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of liquid silicone rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to nano-aluminum trihydrate (ATH) were confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nanofiller dispersion state. The LSR nanocomposite was prepared by compounding LSR filled nano-sized ATH filler. The dc insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without a filler. 

Keywords: Liquid silicone rubber, Nanocomposite, Nano-ATH, HVDC insulation, Cable joints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
5816 A Novel Logarithmic Current-Controlled Current Amplifier (LCCA)

Authors: Karama M. AL-Tamimi, Munir A. Al-Absi

Abstract:

A new OTA-based logarithmic-control variable gain current amplifier (LCCA) is presented. It consists of two Operational Transconductance Amplifier (OTA) and two PMOS transistors biased in weak inversion region. The circuit operates from 0.6V DC power supply and consumes 0.6 μW. The linear-dB controllable output range is 43 dB with maximum error less than 0.5dB. The functionality of the proposed design was confirmed using HSPICE in 0.35μm CMOS process technology.

Keywords: LCCA, OTA, Logarithmic, VGA, Weak inversion, Current-mode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
5815 Current-Mode Resistorless SIMO Universal Filter and Four-Phase Quadrature Oscillator

Authors: Jie Jin

Abstract:

In this paper, a new CMOS current-mode single input and multi-outputs (SIMO) universal filter and quadrature oscillator with a similar circuit are proposed. The circuits only consist of three Current differencing transconductance amplifiers (CDTA) and two grounded capacitors, which are resistorless, and they are suitable for monolithic integration. The universal filter uses minimum CDTAs and passive elements to realize SIMO type low-pass (LP), high-pass (HP), band-pass (BP) band-stop (BS) and all-pass (AP) filter functions simultaneously without any component matching conditions. The angular frequency (ω0) and the quality factor (Q) of the proposed filter can be electronically controlled and tuned orthogonal. By some modifications of the filter, a new current-mode four-phase quadrature oscillator (QO) can be obtained easily. The condition of oscillation (CO) and frequency of oscillation (FO) of the QO can be controlled electronically and independently through the bias current of the CDTAs, and it is suitable for variable frequency oscillator. Moreover, all the passive and active sensitivities of the circuits are low. SPICE simulation results are included to confirm the theory.

Keywords: Universal Filter, Quadrature Oscillator, Current mode, Current differencing transconductance amplifiers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
5814 Analysis of Equal cost Adaptive Routing Algorithms using Connection-Oriented and Connectionless Protocols

Authors: ER. Yashpaul Singh, A. Swarup

Abstract:

This research paper evaluates and compares the performance of equal cost adaptive multi-path routing algorithms taking the transport protocols TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) using network simulator ns2 and concludes which one is better.

Keywords: Multi-path routing algorithm, Datagram, Virtual Circuit, Throughput, Network services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
5813 The Impact of Hospital Intensive Care Unit Window Design on Daylighting and Energy Performance in Desert Climate

Authors: A. Sherif, H. Sabry, A. Elzafarany, M. Gadelhak, R. Arafa, M. Aly

Abstract:

This paper addresses the design of hospital Intensive Care Unit windows for the achievement of visual comfort and energy savings. The aim was to identify the window size and shading system configurations that could fulfill daylighting adequacy, avoid glare and reduce energy consumption. The study focused on addressing the effect of utilizing different shading systems in association with a range of Window-to-Wall Ratios (WWR) in different orientations under the desert clear-sky of Cairo, Egypt. The results of this study demonstrated that solar penetration is a critical concern affecting the design of ICU windows in desert locations, as in Cairo, Egypt. Use of shading systems was found to be essential in providing acceptable daylight performance and energy saving. Careful positioning of the ICU window towards a proper orientation can dramatically improve performance. It was observed that ICU windows facing the north direction enjoyed the widest range of successful window configuration possibilities at different WWRs. ICU windows facing south enjoyed a reasonable number of configuration options as well. By contrast, the ICU windows facing the east orientation had a very limited number of options that provide acceptable performance. These require additional local shading measures at certain times due to glare incidence. Moreover, use of horizontal sun breakers and solar screens to protect the ICU windows proved to be more successful than the other alternatives in a wide range of Window to Wall Ratios. By contrast, the use of light shelves and vertical shading devices seemed questionable.

Keywords: Daylighting, Desert, Energy Efficiency, Shading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
5812 Evaluation of SSR Markers Associated with High Oleic Acid in Sunflower

Authors: Atitaya Singchai, Nooduan Muangsan, Thitiporn Machikowa

Abstract:

Sunflower oil with high oleic acid content is most desirable because of its high oxidative stability. Screening sunflower of high oleic acid using conventional method is laborious and time consuming. Therefore, the use of molecular markers as a screening tool is promising. The objective of this research was to evaluate SSR primers for high oleic acid content in sunflower. Two sunflower lines, 5A and PI 649855 were used as the representative of low and high oleic acid sunflowers, respectively, and thirty seven SSR markers were used to identify oleic acid content trait. The results revealing 10 SSR primers showed polymorphic between high and low oleic acid lines and thus were informative. With these primers, therefore, it is possible to identify the genetic markers associated with high oleic acid trait in sunflower genotypes. 

Keywords: Microsatellite, Helianthus annuus L., fatty acid composition, molecular markers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
5811 Single Phase 13-Level D-STATCOM Inverter with Distributed System

Authors: R. Kamalakannan, N. Ravi Kumar

Abstract:

The global energy consumption is increasing persistently and need for distributed power generation through renewable energy is essential. To meet the power requirements for consumers without any voltage fluctuations and losses, modeling and design of multilevel inverter with Flexible AC Transmission System (FACTS) capability is presented. The presented inverter is provided with 13-level cascaded H-bridge topology of Insulated Gate Bipolar Transistor (IGBTs) connected along with inbuilt Distributed Static Synchronous Compensators (DSTATCOM). The DSTATCOM device provides control of power factor stability at local feeder lines and the inverter eliminates Total Harmonic Distortion (THD). The 13-level inverter utilizes 52 switches of each H-bridge is fed with single DC sources separately and the Pulse Width Modulation (PWM) technique is used for switching IGBTs. The control strategy implemented for inverter transmits active power to grid as well as it maintains power factor to be stable with achievement of steady state power transmission. Significant outcome of this project is improvement of output voltage quality with steady state power transmission with low THD. Simulation of inverter with DSTATCOM is performed using MATLAB/Simulink environment. The scaled prototype model of proposed inverter is built and its results were validated with simulated results.

Keywords: FACTS devices, distributed-Static synchronous compensators, DSTATCOM, total harmonics elimination, modular multilevel converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
5810 One-Dimensional Numerical Investigation of a Cylindrical Micro-Combustor Applying Electrohydrodynamics Effect

Authors: Behrouzinia P., Irani R. A., Saidi M.H.

Abstract:

In this paper, a one-dimensional numerical approach is used to study the effect of applying electrohydrodynamics on the temperature and species mass fraction profiles along the microcombustor. Premixed mixture is H2-Air with a multi-step chemistry (9 species and 19 reactions). In the micro-scale combustion because of the increasing ratio of area-to-volume, thermal and radical quenching mechanisms are important. Also, there is a significant heat loss from the combustor walls. By inserting a number of electrodes into micro-combustor and applying high voltage to them corona discharge occurs. This leads in moving of induced ions toward natural molecules and colliding with them. So this phenomenon causes the movement of the molecules and reattaches the flow to the walls. It increases the velocity near the walls that reduces the wall boundary layer. Consequently, applying electrohydrodynamics mechanism can enhance the temperature profile in the microcombustor. Ultimately, it prevents the flame quenching in microcombustor.

Keywords: micro-combustor, electrohydrodynamics, temperature profile, wall quenching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
5809 Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool

Authors: D. Subedi, S. Pradhan

Abstract:

Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However, when the power system experiences an abnormal situation leading to huge current flow, then this huge current is proportionally injected to the protection and metering circuit. Since the protection and metering equipment’s are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore, during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and on the reliability of the protection and metering system. This paper shows the effect of burden on the Accuracy Limiting factor/ Instrument security factor of current transformers and the change in saturation characteristics of the CT’s. The response of the CT to varying levels of overcurrent at different connected burden will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer saturation characteristics with changes in burden will be discussed.

Keywords: Accuracy limiting factor, burden, current transformer, instrument security factor, saturation characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3579
5808 Development of Low-cost OCDMA Encoder Based On Arrayed Waveguide Gratings(AWGs) and Optical Switches

Authors: Mohammad Syuhaimi Ab-Rahman, Boon Chuan Ng, Norshilawati Mohamad Ibrahim, Sahbudin Shaari

Abstract:

This paper describes the development of a 16-ports optical code division multiple access (OCDMA) encoder prototype based on Arrayed Waveguide Grating (AWG) and optical switches. It is potentially to provide a high security for data transmission due to all data will be transmitted in binary code form. The output signals from AWG are coded with a binary code that given to an optical switch before it signal modulate with the carrier and transmitted to the receiver. The 16-ports encoder used 16 double pole double throw (DPDT) toggle switches to control the polarization of voltage source from +5 V to -5 V for 16 optical switches. When +5 V is given, the optical switch will give code '1' and vice versa. The experimental results showed the insertion loss, crosstalk, uniformity, and optical signal-noise-ratio (OSNR) for the developed prototype are <12 dB, 9.77 dB, <1.63dB, and ≥20dB.

Keywords: AWG, encoder, OCDMA, optical switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
5807 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction

Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar

Abstract:

Using cold EGR method with variable venturi and turbocharger has a very significant effect on reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percentages of EGR and for determining optimum temperature of exhausted gases, growth of efficiency, reduction of weight, dimension, expenditures, sediment and also optimum performance by using gasoil which has significant amounts of brimstone are investigated and optimized.

Keywords: Cold EGR, NOX, Cooler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3906
5806 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System

Authors: E. E. El-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou. M. El-Refay, Mohammed El-Zefery

Abstract:

Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of threephase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.

Keywords: Photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
5805 A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem

Authors: T. Vigneswaran, B. Mukundhan, P. Subbarami Reddy

Abstract:

Full adders are important components in applications such as digital signal processors (DSP) architectures and microprocessors. In addition to its main task, which is adding two numbers, it participates in many other useful operations such as subtraction, multiplication, division,, address calculation,..etc. In most of these systems the adder lies in the critical path that determines the overall speed of the system. So enhancing the performance of the 1-bit full adder cell (the building block of the adder) is a significant goal.Demands for the low power VLSI have been pushing the development of aggressive design methodologies to reduce the power consumption drastically. To meet the growing demand, we propose a new low power adder cell by sacrificing the MOS Transistor count that reduces the serious threshold loss problem, considerably increases the speed and decreases the power when compared to the static energy recovery full (SERF) adder. So a new improved 14T CMOS l-bit full adder cell is presented in this paper. Results show 50% improvement in threshold loss problem, 45% improvement in speed and considerable power consumption over the SERF adder and other different types of adders with comparable performance.

Keywords: Arithmetic circuit, full adder, multiplier, low power, very Large-scale integration (VLSI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3959
5804 An Improved Design of Area Efficient Two Bit Comparator

Authors: Shashank Gautam, Pramod Sharma

Abstract:

In present era, development of digital circuits, signal processors and other integrated circuits, magnitude comparators are challenged by large area and more power consumption. Comparator is most basic circuit that performs comparison. This paper presents a technique to design a two bit comparator which consumes less area and power. DSCH and MICROWIND version 3 are used to design the schematic and design the layout of the schematic, observe the performance parameters at different nanometer technologies respectively.

Keywords: Chip design, consumed power, layout area, two bit comparator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
5803 Electric Field Analysis and Experimental Evaluation of 400 kV Silicone Composite Insulator

Authors: M. Nageswara Rao, N. Sumathi, V. S. N. K. Chaitanya

Abstract:

In electrical power system, high voltage insulators are necessary for consistent performance. All insulators are exposed to different mechanical and electrical stresses. Mechanical stresses occur due to various loads such as wind load, hardware and conductors weight. Electrical stresses are due to over voltages and operating voltages. The performance analysis of polymer insulators is an essential, as most of the electrical utility companies are employing polymer insulators for new and updated transmission lines. In this paper, electric field is analyzed for 400 kV silicone (SiR) composite insulator by COULOMB 3D software based on boundary element method. The field results are compared with EPRI reference values. Our results proved that values at critical regions are very less compared to EPRI reference values. And also experimentally 400 kV single V suspension string is evaluated as per IEC standards.

Keywords: Electric field analysis, silicone composite insulator, boundary element method, RIV, Corona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
5802 Battery Grading Algorithm in 2nd-Life Repurposing Li-ion Battery System

Authors: Ya Lv, Benjamin Ong Wei Lin, Wanli Niu, Benjamin Seah Chin Tat

Abstract:

This article presents a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as energy storage system (ESS). Most of the 2nd-life retired battery systems in market have module/pack-level state of health (SOH) indicator, which is utilized for guiding appropriate depth of discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end of life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance the system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.

Keywords: Battery grading algorithm, 2nd-life repurposing battery system, semi-analytic methodology, reliability and cyclability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
5801 Wind Farm Modeling for Steady State and Dynamic Analysis

Authors: G.Kabashi, K.Kadriu, A.Gashi, S.Kabashi, G, Pula, V.Komoni

Abstract:

This paper focuses on PSS/E modeling of wind farms of Doubly-fed Induction Generator (DFIG) type and their impact on issues of power system operation. Since Wind Turbine Generators (WTG) don-t have the same characteristics as synchronous generators, the appropriate modeling of wind farms is essential for transmission system operators to analyze the best options of transmission grid reinforcements as well as to evaluate the wind power impact on reliability and security of supply. With the high excepted penetration of wind power into the power system a simultaneous loss of Wind Farm generation will put at risk power system security and reliability. Therefore, the main wind grid code requirements concern the fault ride through capability and frequency operation range of wind turbines. In case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage and to return quickly to normal operation.

Keywords: Power System transients, PSS/E dynamic simulationDouble-fed Induction Generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4624
5800 Magnetic Field Analysis for a Distribution Transformer with Unbalanced Load Conditions by using 3-D Finite Element Method

Authors: P. Meesuk, T. Kulworawanichpong, P. Pao-la-or

Abstract:

This paper proposes a set of quasi-static mathematical model of magnetic fields caused by high voltage conductors of distribution transformer by using a set of second-order partial differential equation. The modification for complex magnetic field analysis and time-harmonic simulation are also utilized. In this research, transformers were study in both balanced and unbalanced loading conditions. Computer-based simulation utilizing the threedimensional finite element method (3-D FEM) is exploited as a tool for visualizing magnetic fields distribution volume a distribution transformer. Finite Element Method (FEM) is one among popular numerical methods that is able to handle problem complexity in various forms. At present, the FEM has been widely applied in most engineering fields. Even for problems of magnetic field distribution, the FEM is able to estimate solutions of Maxwell-s equations governing the power transmission systems. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Keywords: Distribution Transformer, Magnetic Field, Load Unbalance, 3-D Finite Element Method (3-D FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
5799 Application of MoM-GEC Method for Electromagnetic Study of Planar Microwave Structures: Shielding Application

Authors: Ahmed Nouainia, Mohamed Hajji, Taoufik Aguili

Abstract:

In this paper, an electromagnetic analysis is presented for describing the influence of shielding in a rectangular waveguide. A hybridization based on the method of moments combined to the generalized equivalent circuit MoM-GEC is used to model the problem. This is validated by applying the MoM-GEC hybridization to investigate a diffraction structure. It consists of electromagnetic diffraction by an iris in a rectangular waveguide. Numerical results are shown and discussed and a comparison with FEM and Marcuvitz methods is achieved.

Keywords: Inductive irises, MoM-GEC, waveguide, shielding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148