Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33104
Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation

Authors: Ju-Na Hwang, Yong-Jun Park, Min-Hae Park, Kee-Joe Lim

Abstract:

Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, high voltage direct current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of liquid silicone rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to nano-aluminum trihydrate (ATH) were confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nanofiller dispersion state. The LSR nanocomposite was prepared by compounding LSR filled nano-sized ATH filler. The dc insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without a filler. 

Keywords: Liquid silicone rubber, Nanocomposite, Nano-ATH, HVDC insulation, Cable joints.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1090807

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601

References:


[1] Y. Maekawa, A. Yamaguchi, C. Ikeda, Y. Sekii and M. Hara, Proceeding of Jicable91, B.9.3, pp.562-569 (1991)
[2] K. Terashima, H. Suzuki, M. Hara and K. Watanabe, IEEE Trans. Pow. Delive., Vol.13, No.1, pp.7-16 (1998)
[3] Y. Maekawa, C. Watanabe, M. Asano, Y. Murata, S. Katakai and M. Shimada, Trans. IEE of Japan, Vol.121-B, No.3, pp.390-398 (2001)
[4] Y. Maekawa, T. Yamanaka, T. Kimura, Y. Murata, S. Katakai and O. Matsunaga, The Hitachi Densen, No.21, pp.65-72 (2002)
[5] L. J. Hiivala, IEEE press, pp. 208-240 (2000)
[6] R. Bodega, G. Perego, P. H. F. Morshuis, U. H. Nilsso and J. J. Smit, IEEE Int’l. Conf. Electr. Insu. Dielectr.(CEIDP), pp.507 (2005)
[7] Ch. C. Reddy and T. S. Ramu, IEEE Trans. Dielectr. Electr. Insul., Vol. 17, pp. 221 -227 (2008)
[8] D. Fabiani, G. C. Montanari and L. A. Dissado, IEEE Int’l. Conf. Properties Appl. Dielectr. Materials (ICPADM), No. D-2, pp.337-340 (2009)
[9] L. Meyer, E.A. Cherney and S.H. Jayaram, IEEE Electr.Insul. Mag., Vol. 20, No. 4, pp. 13-21 (2004)
[10] M. Kozako, M. Higashikoji, T. Tominaga, M. Hikita, G. Ueta, S. Okabe and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., Vol. 19, No. 5, pp.1760-1764 (2012)
[11] I. B. Jeong, J. S. Kim, J. Y. Lee, J. Y. Shin and J. W. Hong, Trans. Electr. Electro. Materials, Vol. 11, No. 6, pp. 261-265 (2010)
[12] L. Lei, W. Xishan and C. Dengke, IEEE Intern. Conf. Solid Dielectr.(ICSD), pp.804-807 (2004)
[13] B. Venkatesulu and M. Joy Thomas, IEEE Trans. Dielectr. Electr. Insu., Vol. 17, No. 2 (2010)
[14] S. Fang, Z. Jia, H. Gao and Z. Guan, IEEE Int’l. Conf. Electr. Insu. Dielectr.(CEIDP), pp.300-303 (2007)
[15] Han, C. Diao, L. Dong and X. Zhang, IEEE Int’l. Conf. Solid Dielectr.(ICSD), pp.330 (2007)
[16] S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insu.,Vol. 15, No. 1 (2008)
[17] T. Tanaka, G.C. Montanari and R. Mulhapt, IEEE Trans. Dielectr. Electr. Insul., Vol. 11, pp. 763-784 (2004)
[18] M.L. Frechette, M.L. Trudeau, H.D. Alamdari and S. Boily, IEEE Trans. Dielectr. Electr. Insul., Vol. 11, pp. 808-818 (2004)
[19] Y. Murata, Y. Sekiguchi, Y. lnoue and M. Kanaoka, Proceedings of 2005 Int’l. Symp. Electr. Insu. Materials, pp.650-653 (2005)T. W. Dakin, "Application of Epoxy Resins in Electrical Apparatus”, IEEE Trans. Dielectr. Electr. Insul., Vol.EI-9, No.4, pp.121-128,