WASET
	%0 Journal Article
	%A Jaydip M. Desai and  Antonio Valdevit and  Arthur Ritter
	%D 2015
	%J International Journal of Biomedical and Biological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 100, 2015
	%T Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction
	%U https://publications.waset.org/pdf/10000944
	%V 100
	%X Robotic surgery is used to enhance minimally invasive
surgical procedure. It provides greater degree of freedom for surgical
tools but lacks of haptic feedback system to provide sense of touch to
the surgeon. Surgical robots work on master-slave operation, where
user is a master and robotic arms are the slaves. Current, surgical
robots provide precise control of the surgical tools, but heavily rely
on visual feedback, which sometimes cause damage to the inner
organs. The goal of this research was to design and develop a realtime
Simulink based robotic system to study force feedback
mechanism during instrument-object interaction. Setup includes three
VelmexXSlide assembly (XYZ Stage) for three dimensional
movement, an end effector assembly for forceps, electronic circuit for
four strain gages, two Novint Falcon 3D gaming controllers,
microcontroller board with linear actuators, MATLAB and Simulink
toolboxes. Strain gages were calibrated using Imada Digital Force
Gauge device and tested with a hard-core wire to measure
instrument-object interaction in the range of 0-35N. Designed
Simulink model successfully acquires 3D coordinates from two
Novint Falcon controllers and transfer coordinates to the XYZ stage
and forceps. Simulink model also reads strain gages signal through
10-bit analog to digital converter resolution of a microcontroller
assembly in real time, converts voltage into force and feedback the
output signals to the Novint Falcon controller for force feedback
mechanism. Experimental setup allows user to change forward
kinematics algorithms to achieve the best-desired movement of the
XYZ stage and forceps. This project combines haptic technology
with surgical robot to provide sense of touch to the user controlling
forceps through machine-computer interface.

	%P 332 - 337