Search results for: double layer porous asphalt
806 Lightweight Materials Obtained by Utilization of Agricultural Waste
Authors: Bogdan Bogdanov, Irena Markovska, Yancho Hristov, Dimitar Georgiev
Abstract:
Lightweight ceramic materials in the form of bricks and blocks are widely used in modern construction. They may be obtained by adding of rice husk, rye straw, etc, as porous forming materials. Rice husk is a major by-product of the rice milling industry. Its utilization as a valuable product has always been a problem. Various technologies for utilization of rice husk through biological and thermochemical conversion are being developed. The purpose of this work is to develop lightweight ceramic materials with clay matrix and filler of rice husk and examine their main physicomechanical properties. The results obtained allow to suppose that the materials synthesized on the basis of waste materials can be used as lightweight materials for construction purpose.Keywords: lightweight ceramic materials, properties, agro-waste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028805 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition
Authors: D. Geringswald, B. Hintze
Abstract:
The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507804 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function
Authors: Anupama Pande, Vishik Goel
Abstract:
A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.
Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411803 Using of Cavitation Disperser, for Porous Ceramic and Concrete Material Preparation
Authors: A. Shishkin, A. Korjakins, V. Mironovs
Abstract:
Present paper describes method of obtaining clay ceramic foam (CCF) and foam concrete (FC), by direct foaming with high speed mixer-disperser (HSMD). Three foaming agents (FA) are compared for the FC and CCF production: SCHÄUMUNGSMITTEL W 53 FLÜSSIG (Zschimmer & Schwarz Gmbh, Germany), SCF- 1245 (Sika, test sample, Latvia) and FAB-12 (Elade, Latvija). CCF were obtained at 950, 1000°C, 1150°C and 1150°C firing temperature and have mechanical compressive strength 1.2, 2.55 and 4.3 MPa and porosity 79.4, 75.1, 71.6%, respectively. Obtained FC has 6-14 MPa compressive strength and porosity 44-55%. The goal of this work was development of a sustainable and durable ceramic cellular structures using HSMD.
Keywords: Ceramic foam, foam concrete, clay foam, open cell, close cell, direct foaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502802 Thermoplastic Composites with Reduced Discoloration and Enhanced Fire-Retardant Property
Authors: Peng Cheng, Liqing Wei, Hongyu Chen, Ruomiao Wang
Abstract:
This paper discusses a light-weight reinforced thermoplastic (LWRT) composite with superior fire retardancy. This porous LWRT composite is manufactured using polyolefin, fiberglass, and fire retardant additives via a wet-lay process. However, discoloration of the LWRT can be induced by various mechanisms, which may be a concern in the building and construction industry. It is commonly understood that discoloration is strongly associated with the presence of phenolic antioxidant(s) and NOx. The over-oxidation of phenolic antioxidant(s) is probably the root-cause of the discoloration (pinking/yellowing). Hanwha Azdel, Inc. developed a LWRT with fire-retardant property of ASTM E84-Class A specification, as well as negligible discoloration even under harsh conditions. In addition, this thermoplastic material is suitable for secondary processing (e.g. compression molding) if necessary.Keywords: Discoloration, fire-retardant, thermoplastic composites, wet-lay process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792801 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India
Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra
Abstract:
Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.
Keywords: Antimalarial medicines, counterfeit, substandard, thin layer chromatography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523800 Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface
Authors: S. W. Lo, S.-H. Lu, Y. H. Guo, L.-C. Hsu
Abstract:
In this paper a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness.
Keywords: Aerostatic, bearing, elastomer, static stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919799 Multiscale Modelization of Multilayered Bi-Dimensional Soils
Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur
Abstract:
Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.
Keywords: Multiscale, bi-dimensional, wavelets, SPM, backscattering, multilayer, air pockets, vegetable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608798 Catalytic Activity of Aluminum Impregnated Catalysts for the Degradation of Waste Polystyrene
Authors: J. Shah, M. Rasul Jan, Adnan
Abstract:
The aluminum impregnated catalysts of Al-alumina (Al-Al2O3), Al-montmorillonite (Al-Mmn) and Al-activated charcoal (Al-AC) of various percent loadings were prepared by wet impregnation method and characterized by SEM, XRD and N2 adsorption/desorption (BET). The catalytic properties were investigated in the degradation of waste polystyrene (WPS). The results of catalytic degradation of Al metal, 20% Al-Al2O3, 5% Al-Mmn and 20% Al-AC were compared with each other for optimum conditions. Among the catalyst used 20% Al-Al2O3 was found the most effective catalyst. The BET surface area of 20% Al-Al2O3 determined was 70.2 m2/g. The SEM data revealed the catalyst with porous structure throughout the frame work with small nanosized crystallites. The yield of liquid products with 20% Al-Al2O3 (91.53 ± 2.27 wt%) was the same as compared to Al metal (91.20 ± 0.35 wt%) but the selectivity of hydrocarbons and yield of styrene monomer (56.32 wt%) was higher with 20% Al-Al2O3 catalyst.
Keywords: Impregnation, catalytic degradation, waste polystyrene, styrene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035797 Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows
Authors: Thomas Rowan, Mohammed Seaid
Abstract:
A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.Keywords: Erosion, finite volume method, sediment transport, shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990796 Secondary Effects on Water Vapor Transport Properties Measured by Cup Method
Authors: Z. Pavlík, J. Fořt, J. Žumár, M. Pavlíková, R. Černý
Abstract:
The cup method is applied for the measurement of water vapor transport properties of porous materials worldwide. However, in practical applications the experimental results are often used without taking into account some secondary effects which can play an important role under specific conditions. In this paper, the effect of temperature on water vapor transport properties of cellular concrete is studied, together with the influence of sample thickness. At first, the bulk density, matrix density, total open porosity and sorption and desorption isotherms are measured for material characterization purposes. Then, the steady state cup method is used for determination of water vapor transport properties, whereas the measurements are performed at several temperatures and for three different sample thicknesses.
Keywords: Water vapor transport, cellular concrete, cup method, temperature, sample thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896795 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer
Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari
Abstract:
Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.
Keywords: Cosmetic products, methylparaben, molecularly imprinted polymer, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006794 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen
Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi
Abstract:
In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.Keywords: Chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720793 Thermal Method for Testing Small Chemisorbents Samples on the Base of Potassium Superoxide
Authors: Pavel V. Balabanov, Daria A. Liubimova, Aleksandr P. Savenkov
Abstract:
The increase of technogenic and natural accidents, accompanied by air pollution, for example, by combustion products, leads to the necessity of respiratory protection. This work is devoted to the development of a calorimetric method and a device which allows investigating quickly the kinetics of carbon dioxide sorption by chemisorbents on the base of potassium superoxide in order to assess the protective properties of respiratory protective closed circuit apparatus. The features of the traditional approach for determining the sorption properties in a thin layer of chemisorbent are described, as well as methods and devices, which can be used for the sorption kinetics study. The authors developed an approach (as opposed to the traditional approach) based on the power measurement of internal heat sources in the chemisorbent layer. The emergence of the heat sources is a result of exothermic reaction of carbon dioxide sorption. This approach eliminates the necessity of chemical analysis of samples and can significantly reduce the time and material expenses during chemisorbents testing. Error of determining the volume fraction of adsorbed carbon dioxide by the developed method does not exceed 12%. Taking into account the efficiency of the method, we consider that it is a good alternative to traditional methods of chemical analysis under the assessment of the protection sorbents quality.
Keywords: Carbon dioxide chemisorption, exothermic reaction, internal heat sources, respiratory protective apparatus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696792 A Processor with Dynamically Reconfigurable Circuit for Floating-Point Arithmetic
Authors: Yukinari Minagi , Akinori Kanasugi
Abstract:
This paper describes about dynamic reconfiguration to miniaturize arithmetic circuits in general-purpose processor. Dynamic reconfiguration is a technique to realize required functions by changing hardware construction during operation. The proposed arithmetic circuit performs floating-point arithmetic which is frequently used in science and technology. The data format is floating-point based on IEEE754. The proposed circuit is designed using VHDL, and verified the correct operation by simulations and experiments.Keywords: dynamic reconfiguration, floating-point arithmetic, double precision, FPGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518791 Packet Forwarding with Multiprotocol Label Switching
Authors: R.N.Pise, S.A.Kulkarni, R.V.Pawar
Abstract:
MultiProtocol Label Switching (MPLS) is an emerging technology that aims to address many of the existing issues associated with packet forwarding in today-s Internetworking environment. It provides a method of forwarding packets at a high rate of speed by combining the speed and performance of Layer 2 with the scalability and IP intelligence of Layer 3. In a traditional IP (Internet Protocol) routing network, a router analyzes the destination IP address contained in the packet header. The router independently determines the next hop for the packet using the destination IP address and the interior gateway protocol. This process is repeated at each hop to deliver the packet to its final destination. In contrast, in the MPLS forwarding paradigm routers on the edge of the network (label edge routers) attach labels to packets based on the forwarding Equivalence class (FEC). Packets are then forwarded through the MPLS domain, based on their associated FECs , through swapping the labels by routers in the core of the network called label switch routers. The act of simply swapping the label instead of referencing the IP header of the packet in the routing table at each hop provides a more efficient manner of forwarding packets, which in turn allows the opportunity for traffic to be forwarded at tremendous speeds and to have granular control over the path taken by a packet. This paper deals with the process of MPLS forwarding mechanism, implementation of MPLS datapath , and test results showing the performance comparison of MPLS and IP routing. The discussion will focus primarily on MPLS IP packet networks – by far the most common application of MPLS today.Keywords: Forwarding equivalence class, incoming label map, label, next hop label forwarding entry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693790 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid
Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee
Abstract:
The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.
Keywords: Copper-CO2 nanofluid, molecular interfacial layer, thermal conductivity, molecular dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110789 Application of SDS/LABS in Recovery Improvement from Fractured Models
Authors: Rasool Razmi, Mohammad Hossein Sedaghat, Reza Janamiri, Amir Hatampou
Abstract:
This work concerns on experimentally investigation of surfactant flooding in fractured porous media. In this study a series of water and surfactant injection processes were performed on micromodels initially saturated with a heavy crude oil. Eight fractured glass micromodels were used to illustrate effects of surfactant types and concentrations on oil recovery efficiency in presence of fractures with different properties i.e. fracture orientation, length and number of fractures. Two different surfactants with different concentrations were tested. The results showed that surfactant flooding would be more efficient by using SDS surfactant aqueous solution and also by locating injection well in a proper position respect to fracture properties. This study demonstrates different physical and chemical conditions that affect the efficiency of this method of enhanced oil recovery.Keywords: Displacement, Fractured five-spot systems, Heavy oil, Surfactant flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894788 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics
Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri
Abstract:
Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.
Keywords: Impedance spectroscopy, Ultrasensitive detection in blood, Peak frequency, Electronic interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693787 Novel Method for Elliptic Curve Multi-Scalar Multiplication
Authors: Raveen R. Goundar, Ken-ichi Shiota, Masahiko Toyonaga
Abstract:
The major building block of most elliptic curve cryptosystems are computation of multi-scalar multiplication. This paper proposes a novel algorithm for simultaneous multi-scalar multiplication, that is by employing addition chains. The previously known methods utilizes double-and-add algorithm with binary representations. In order to accomplish our purpose, an efficient empirical method for finding addition chains for multi-exponents has been proposed.Keywords: elliptic curve cryptosystems, multi-scalar multiplication, addition chains, Fibonacci sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611786 Effect of Reynolds Number and Concentration of Biopolymer (Gum Arabic) on Drag Reduction of Turbulent Flow in Circular Pipe
Authors: Kamaljit Singh Sokhal, Gangacharyulu Dasoraju, Vijaya Kumar Bulasara
Abstract:
Biopolymers are popular in many areas, like petrochemicals, food industry and agriculture due to their favorable properties like environment-friendly, availability, and cost. In this study, a biopolymer gum Arabic was used to find its effect on the pressure drop at various concentrations (100 ppm – 300 ppm) with various Reynolds numbers (10000 – 45000). A rheological study was also done by using the same concentrations to find the effect of the shear rate on the shear viscosity. Experiments were performed to find the effect of injection of gum Arabic directly near the boundary layer and to investigate its effect on the maximum possible drag reduction. Experiments were performed on a test section having i.d of 19.50 mm and length of 3045 mm. The polymer solution was injected from the top of the test section by using a peristaltic pump. The concentration of the polymer solution and the Reynolds number were used as parameters to get maximum possible drag reduction. Water was circulated through a centrifugal pump having a maximum 3000 rpm and the flow rate was measured by using rotameter. Results were validated by using Virk's maximum drag reduction asymptote. A maximum drag reduction of 62.15% was observed with the maximum concentration of gum Arabic, 300 ppm. The solution was circulated in the closed loop to find the effect of degradation of polymers with a number of cycles on the drag reduction percentage. It was observed that the injection of the polymer solution in the boundary layer was showing better results than premixed solutions.
Keywords: Drag reduction, shear viscosity, gum Arabic, injection point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743785 Tool Wear of Titanium/Tungsten/Silicon/Aluminum-based-coated end Mill Cutters in Millin Hardened Steel
Authors: Tadahiro Wada, Koji Iwamoto
Abstract:
In turning hardened steel, polycrystalline cubic boron nitride (cBN) compacts are widely used, due to their higher hardness and higher thermal conductivity. However, in milling hardened steel, fracture of cBN cutting tools readily occurs because they have poor fracture toughness. Therefore, coated cemented carbide tools, which have good fracture toughness and wear resistance, are generally widely used. In this study, hardened steel (ASTM D2, JIS SKD11, 60HRC) was milled with three physical vapor deposition (PVD)-coated cemented carbide end mill cutters in order to determine effective tool materials for cutting hardened steel at high cutting speeds. The coating films used were (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating films. (Ti,W,Si,Al)N is a new type of coating film. The inner layer of the (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating system is (Ti,W)N coating film, and the outer layer is (Ti,W,Si)N and (Ti,W,Si,Al)N coating films, respectively. Furthermore, commercial (Ti,Al)N-based coating film was also used. The following results were obtained: (1) In milling hardened steel at a cutting speed of 3.33 m/s, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,W)N/(Ti,W,Si)N-coated tool. And, compared with the commercial (Ti,Al)N, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,Al)N-coated tool. (2) The tool wear of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool increased with an increase in cutting speed. (3) The (Ti,W)N/(Ti,W,Si,Al)N-coated cemented carbide was an effective tool material for high-speed cutting below a cutting speed of 3.33 m/s.Keywords: cutting, physical vapor deposition (PVD) coating system, hardened steel, tool wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059784 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle
Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen
Abstract:
In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.
Keywords: Activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635783 Radiation Effects on the Unsteady MHD Free Convection Flow Past in an Infinite Vertical Plate with Heat Source
Authors: Tusharkanta Das, Tumbanath Samantara, Sukanta Kumar Sahoo
Abstract:
Unsteady effects of MHD free convection flow past in an infinite vertical plate with heat source in presence of radiation with reference to all critical parameters that appear in field equations are studied in this paper. The governing equations are developed by usual Boussinesq’s approximation. The problem is solved by using perturbation technique. The results are obtained for velocity, temperature, Nusselt number and skin-friction. The effects of magnetic parameter, prandtl number, Grashof number, permeability parameter, heat source/sink parameter and radiation parameter are discussed on flow characteristics and shown by means of graphs and tables.
Keywords: Heat transfer, radiation, MHD, free convection, porous medium, suction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879782 An Improved Transfer Logic of the Two-Path Algorithm for Acoustic Echo Cancellation
Abstract:
Adaptive echo cancellers with two-path algorithm are applied to avoid the false adaptation during the double-talk situation. In the two-path algorithm, several transfer logic solutions have been proposed to control the filter update. This paper presents an improved transfer logic solution. It improves the convergence speed of the two-path algorithm, and allows the reduction of the memory elements and computational complexity. Results of simulations show the improved performance of the proposed solution.Keywords: Acoustic echo cancellation, Echo return lossenhancement (ERLE), Two-path algorithm, Transfer logic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771781 Investigation into the Bond between CFRP and Steel Plates
Authors: S. Fawzia, M. A. Karim
Abstract:
The use of externally bonded Carbon Fiber Reinforced Polymer (CFRP) reinforcement has proven to be an effective technique to strengthen steel structures. An experimental study on CFRP bonded steel plate with double strap joint has been conducted and specimens are tested under tensile loadings. An empirical model has been developed using stress-based approach to predict ultimate capacity of the CFRP bonded steel structure. The results from the model are comparable with the experimental result with a reasonable accuracy.Keywords: Carbon fibre reinforced polymer, shear stress, slip, effective bond, steel structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954780 A Direct Down-conversion Receiver for Low-power Wireless Sensor Networks
Authors: Gianluca Cornetta, Abdellah Touhafi, David J. Santos, Jose Manuel Vazquez
Abstract:
A direct downconversion receiver implemented in 0.13 μm 1P8M process is presented. The circuit is formed by a single-end LNA, an active balun for conversion into balanced mode, a quadrature double-balanced passive switch mixer and a quadrature voltage-controlled oscillator. The receiver operates in the 2.4 GHz ISM band and complies with IEEE 802.15.4 (ZigBee) specifications. The circuit exhibits a very low noise figure of only 2.27 dB and dissipates only 14.6 mW with a 1.2 V supply voltage and is hence suitable for low-power applications.
Keywords: LNA, Active Balun, Passive Mixer, VCO, IEEE 802.15.4(ZigBee).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350779 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method
Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi
Abstract:
Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.Keywords: Free surface flows, Breaking waves, Boundary layer, Wigley hull, Volume of fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3562778 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method
Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi
Abstract:
Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.Keywords: Free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3302777 Effects of Carbonation on the Microstructure and Macro Physical Properties of Cement Mortar
Authors: Son Tung Pham, William Prince
Abstract:
The objective of this work was to examine the changes in the microstructure and macro physical properties caused by the carbonation of normalised CEM II mortar. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. On the microstructure scale, the evolutions of the cumulative pore volume, pore size distribution, and specific surface area during carbonation were calculated from the adsorption desorption isotherms of nitrogen. We also examined the evolution of macro physical properties such as the porosity accessible to water, the gas permeability, and thermal conductivity. The conflict between the results of nitrogen porosity and water porosity indicated that the porous domains explored using these two techniques are different and help to complementarily evaluate the effects of carbonation. This is a multi-scale study where results on microstructural changes can help to explain the evolution of macro physical properties.Keywords: Carbonation, cement mortar, microstructure, physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894