Search results for: finite impulse response (FIR)filter.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2925

Search results for: finite impulse response (FIR)filter.

2175 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.

Keywords: Ampere’s force law, dynamical response, fatigue and fracture characterization, paired wire actuators and sensors, MEMS/NEMS devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 969
2174 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method

Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati

Abstract:

An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.

Keywords: Cell-centered finite volume method, physical influence scheme, exponential differencing scheme, skew upwind differencing scheme, false diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
2173 Novel Direct Flux and Torque Control of Optimally Designed 6 Phase Reluctance Machine with Special Current Waveform

Authors: E T. Rakgati, E. Matlotse

Abstract:

In this paper the principle, basic torque theory and design optimisation of a six-phase reluctance dc machine are considered. A trapezoidal phase current waveform for the machine drive is proposed and evaluated to minimise ripple torque. Low cost normal laminated salient-pole rotors with and without slits and chamfered poles are investigated. The six-phase machine is optimised in multi-dimensions by linking the finite-element analysis method directly with an optimisation algorithm; the objective function is to maximise the torque per copper losses of the machine. The armature reaction effect is investigated in detail and found to be severe. The measured and calculated torque performances of a 35 kW optimum designed six-phase reluctance dc machine drive are presented.

Keywords: Reluctance dc machine, current waveform, design optimisation, finite element analysis, armature reaction effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
2172 Analytical and Finite Element Analysis of Hydroforming Deep Drawing Process

Authors: Maziar Ramezani, Thomas Neitzert

Abstract:

This paper gives an overview of a deep drawing process by pressurized liquid medium separated from the sheet by a rubber diaphragm. Hydroforming deep drawing processing of sheet metal parts provides a number of advantages over conventional techniques. It generally increases the depth to diameter ratio possible in cup drawing and minimizes the thickness variation of the drawn cup. To explore the deformation mechanism, analytical and numerical simulations are used for analyzing the drawing process of an AA6061-T4 blank. The effects of key process parameters such as coefficient of friction, initial thickness of the blank and radius between cup wall and flange are investigated analytically and numerically. The simulated results were in good agreement with the results of the analytical model. According to finite element simulations, the hydroforming deep drawing method provides a more uniform thickness distribution compared to conventional deep drawing and decreases the risk of tearing during the process.

Keywords: Deep drawing, Hydroforming, Rubber diaphragm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
2171 Numerical and Experimental Stress Analysis of Stiffened Cylindrical Composite Shell under Transverse end Load

Authors: J. Arashmehr, G. H. Rahimi, S.F.Rasouli

Abstract:

Grid composite structures have many applications in aerospace industry in which deal with transverse loadings abundantly. In present paper a stiffened composite cylindrical shell with clamped-free boundary condition under transverse end load experimentally and numerically was studied. Some electrical strain gauges were employed to measure the strains. Also a finite element analysis was done for validation of experimental result. The FEM software used was ANSYS11. In addition, the results between stiffened composite shell and unstiffened composite shell were compared. It was observed that intersection of two stiffeners has an important effect in decrease of stress in the shell. Fairly good agreements were observed between the numerical and the measured results. According to recent studies about grid composite structures, it should be noted that any investigation like this research has not been reported.

Keywords: Grid composite structure, Transverse loadings, Strain measurement, Finite element analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
2170 A Canadian Leaf Shaped Triple Band Patch Antenna with DGS for X and C-Band Applications

Authors: R. Kiruthika, T. Shanmuganantham

Abstract:

A shaped single feed microstrip antenna is realized for C-Band and X-Band applications. The frequency range of C-band and X-band varies from 4 to 8 Gigahertz and 8 to 12 Gigahertz. The antenna operates under three frequency bands, one under C band and two under X-band applications. Defect on the ground called DGS (Defected Ground Structure) is made to enhance the distinctiveness of the antenna parameters. The design consists of DGS provided to improve the antenna performance. The substrate material used is of the Flame Retardant grade-4 (FR4) epoxy having high mechanical and electrical strength. The design and analysis was done using the FEM (Finite Element Method) based Ansoft HFSS (High Frequency Structural Simulator) Version 12. For the resonant frequencies of 5.21, 9.17 and 10.45, a value of reflection coefficient obtained is of -39.0, -16.0 and -30.7 dB respectively. Other constraints of antenna such as bandwidth, gain, directivity and Voltage Standing Wave Ratio (VSWR) are also conferred.

Keywords: Flame retardant-4 epoxy, finite element method, return loss, directivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
2169 Effect of Mass on Bus Superstructure Strength Having Rollover Crash

Authors: Mustafa Bin Yusof, Mohammad Amirul Affiz Bin Afripin

Abstract:

Safety of bus journey is a fundamental concern. Risk of injuries and fatalities is severe when bus superstructure fails during rollover accident. Adequate design and sufficient strength of bus superstructure can reduce the number of injuries and fatalities. This paper deals with structural analysis of bus superstructure undergoes rollover event. Several value of mass will be varied in multiple simulations. The purpose of this work is to analyze structural response of bus superstructure in terms of deformation, stress and strain under several loading and constraining conditions. A complete bus superstructure with forty four passenger-s capability was developed using finite element analysis software. Simulations have been conducted to observe the effect of total mass of bus on the strength of superstructure. These simulations are following United Nation Economic Commission of Europe regulation 66 which focuses on strength of large vehicle superstructure. Validation process had been done using simple box model experiment and results obtained are comparing with simulation results. Inputs data from validation process had been used in full scale simulation. Analyses suggested that, the failure of bus superstructure during rollover situation is basically dependent on the total mass of bus and on the strength of bus superstructure.

Keywords: Bus, rollover, superstructure strength, UNECE regulation 66.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
2168 Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft

Authors: Rabah Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. This allows the capture shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10-8

Keywords: Chemical kinetic, dissociation, finite volumes, frozen, hypersonic flow, non-equilibrium, Reactive flow, supersonicflow , vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
2167 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

This paper presents a 4-DOF nonlinear model of a cracked de Laval rotor-stator system derived based on Energy Principles. The model has been used to simulate coupled torsionallateral response of the faulty system with multiple parametric excitations; rotor-stator-rub, a breathing transverse crack, eccentric mass and an axial force. Nonlinearity of a “breathing” crack is incorporated in the model using a simple hinge mechanism suitable for a shallow crack. Response of the system while passing via its critical speed with intermittent rotor-stator rub is analyzed. Effects of eccentricity with phase and acceleration are investigated. Features of crack, rub and eccentricity in vibration response are explored for condition monitoring. The presence of a crack and rub are observable in the power spectrum despite excitations by an axial force and rotor unbalance. Obtained results are consistent with existing literature and could be adopted into rotor condition monitoring strategies.

Keywords: Axial force, Crack, Nonlinear, Rotor-Stator, Rub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
2166 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre

Abstract:

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.

Keywords: Directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
2165 Active Fiber Composites for Smart Damping of Doubly Curved Laminated Shells

Authors: Saroj Kumar Sarangi, M. C. Ray

Abstract:

This paper deals with the analysis of active constrained layer damping (ACLD) of doubly curved laminated composite shells using active fiber composite (AFC) materials. The constraining layer of the ACLD treatment has been considered to be made of the AFC materials. A three dimensional energy based finite element model of the smart doubly curved laminated composite shell integrated with a patch of such ACLD treatment has been developed to demonstrate the performance of the patch on enhancing the damping characteristics of the doubly curved laminated composite shells. Particular emphasis has been placed on studying the effect of variation of piezoelectric fiber orientation angle in the constraining AFC layer on the control authority of the ACLD patch.

Keywords: Active constrained layer damping, Active fibercomposites, Finite element modeling, First order shear deformationtheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
2164 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate

Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim

Abstract:

The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.

Keywords: Micro grid, energy storage systems, ramp rate, control strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
2163 Optimization of Growth of Rhodobacter Sphaeroides Using Mixed Volatile Fatty Acidsby Response Surface Methodology

Authors: R.Sangeetha, T.Karunanithi

Abstract:

A combination of photosynthetic bacteria along with anaerobic acidogenic bacteria is an ideal option for efficient hydrogen production. In the present study, the optimum concentration of substrates for the growth of Rhodobacter sphaeroides was found by response surface methodology. The optimum combination of three individual fatty acids was determined by Box Behnken design. Increase of volatile fatty acid concentration decreased the growth. Combination of sodium acetate and sodium propionate was most significant for the growth of the organism. The results showed that a maximum biomass concentration of 0.916 g/l was obtained when the concentrations of acetate, propionate and butyrate were 0.73g/l,0.99g/l and 0.799g/l, respectively. The growth was studied under an optimum concentration of volatile fatty acids and at a light intensity of 3000 lux, initial pH of 7 and a temperature of 35°C.The maximum biomass concentration of 0.92g/l was obtained which verified the practicability of this optimization.

Keywords: Biohydrogen, Response Surface Methodology, Rhodobacter sphaeroides, Volatile fatty acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
2162 Improvement of Load Carrying Capacity of an RCC T-Beam Bridge Longitudinal Girder by Replacing Steel Bars with SMA Bars

Authors: N. K. Paul, S. Saha

Abstract:

An innovative three dimensional finite element model has beed developed and tested under two point loading system to examine the structural behavior of the longitudinal reinforced concrete Tee-beam bridge girder, reinforcing with steel and shape memory alloy bars respectively. 25% of steel bars are replaced with superelastic Shape Memory Alloy bars in this study. Finite element analysis is performed using ANSYS 11.0 program. Experimentally a model of steel reinforced girder has been casted and its load deflection responses are checked with ANSYS analysis. A comparison of load carrying capacity for the model between steel RC girder and the girder combined reinforcement with SMA and steel are also performed.

Keywords: Shape memory alloy, bridge girder, ANSYS, load-deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
2161 Incident Shock Wave Interaction with an Axisymmetric Cone Body Placed in Shock Tube

Authors: Rabah Haoui

Abstract:

This work presents a numerical simulation of the interaction of an incident shock wave propagates from the left to the right with a cone placed in a tube at shock. The Mathematical model is based on a non stationary, viscous and axisymmetric flow. The Discretization of the Navier-stokes equations is carried out by the finite volume method in the integral form along with the Flux Vector Splitting method of Van Leer. Here, adequate combination of time stepping parameter, CFL coefficient and mesh size level is selected to ensure numerical convergence. The numerical simulation considers a shock tube filled with air. The incident shock wave propagates to the right with a determined Mach number and crosses the cone by leaving behind it a stationary detached shock wave in front of the nose cone. This type of interaction is observed according to the time of flow.

Keywords: Supersonic flow, viscous flow, finite volume, cone body

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
2160 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede

Abstract:

The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm- Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solution of classical Sturm–Liouville problem is presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
2159 Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

Authors: Rabah Haoui

Abstract:

The aim of this work is to analyze a viscous flow in the axisymmetric nozzle taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier- Stokes equations is realized by using the finite volume method to determine the supersonic flow parameters at the exit of convergingdiverging nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level is selected to ensure numerical convergence. The effect of the boundary layer thickness is significant at the exit of the nozzle. The best solution is obtained with using a very fine grid, especially near the wall, where we have a strong variation of velocity, temperature and shear stress. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.

Keywords: Supersonic flow, viscous flow, finite volume, nozzle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
2158 Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts

Authors: M. Aruna, V. Dhanalaksmi

Abstract:

Inconel 718, a nickel based super-alloy is an extensively used alloy, accounting for about 50% by weight of materials used in an aerospace engine, mainly in the gas turbine compartment. This is owing to their outstanding strength and oxidation resistance at elevated temperatures in excess of 5500 C. Machining is a requisite operation in the aircraft industries for the manufacture of the components especially for gas turbines. This paper is concerned with optimization of the surface roughness when turning Inconel 718 with cermet inserts. Optimization of turning operation is very useful to reduce cost and time for machining. The approach is based on Response Surface Method (RSM). In this work, second-order quadratic models are developed for surface roughness, considering the cutting speed, feed rate and depth of cut as the cutting parameters, using central composite design. The developed models are used to determine the optimum machining parameters. These optimized machining parameters are validated experimentally, and it is observed that the response values are in reasonable agreement with the predicted values.

Keywords: Inconel 718, Optimization, Response Surface Methodology (RSM), Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2818
2157 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network

Authors: T. Hacib, M. R. Mekideche, N. Ferkha

Abstract:

This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.

Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
2156 Investigation of the Space in Response to the Conditions Caused by the Pandemics and Presenting Five-Scale Design Guidelines to Adapt and Prepare to Face the Pandemics

Authors: Sara Ramezanzadeh, Nashid Nabian

Abstract:

Historically, pandemics in different periods have caused compulsory changes in human life. In the case of COVID-19, according to the limitations and established care instructions, spatial alignment with the conditions is important. Following the outbreak of COVID-19, the question raised in this study is how to do spatial design in five scales, namely object, space, architecture, city, and infrastructure, in response to the consequences created in the realms under study. From the beginning of the pandemic until now, some changes in the spatial realm have been created spontaneously or by space users. These transformations have been mostly applied in modifiable parts such as furniture arrangement, especially in work-related spaces. To implement other comprehensive requirements, flexibility and adaptation of space design to the conditions resulting from the pandemics are needed during and after the outbreak. Studying the effects of pandemics from the past to the present, this research covers eight major realms, including three categories of ramifications, solutions, and paradigm shifts, and analytical conclusions about the solutions that have been created in response to them. Finally, by the consideration of epidemiology as a modern discipline influencing the design, spatial solutions in the five scales mentioned (in response to the effects of the eight realms for spatial adaptation in the face of pandemics and their following conditions) are presented as a series of guidelines. Due to the unpredictability of possible pandemics in the future, the possibility of changing and updating the provided guidelines is considered.

Keywords: Pandemics, COVID-19, spatial design, ramifications, paradigm shifts, guidelines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135
2155 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams

Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady

Abstract:

This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.

Keywords: Steel I-beams, local buckling, slender, stiffener, thin walled section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
2154 Generalized d-q Model of n-Phase Induction Motor Drive

Authors: G. Renukadevi, K. Rajambal

Abstract:

This paper presents a generalized d-q model of n- phase induction motor drive. Multi -phase (n-phase) induction motor (more than three phases) drives possess several advantages over conventional three-phase drives, such as reduced current/phase without increasing voltage/phase, lower torque pulsation, higher torque density, fault tolerance, stability, high efficiency and lower current ripple. When the number of phases increases, it is also possible to increase the power in the same frame. In this paper, a generalized dq-axis model is developed in Matlab/Simulink for an n-phase induction motor. The simulation results are presented for 5, 6, 7, 9 and 12 phase induction motor under varying load conditions. Transient response of the multi-phase induction motors are given for different number of phases. Fault tolerant feature is also analyzed for 5-phase induction motor drive.

Keywords: d-q model, dynamic Response, fault tolerant feature, Matlab/Simulink, multi-phase induction motor, transient response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10520
2153 Finite Element Dynamic Analysis of Composite Structure Cracks

Authors: Omid A. Zargar

Abstract:

Material damages dynamic analysis is difficult to deal with different material geometry and mechanism. In addition, it is difficult to measure the dynamic behavior of cracks, debond and delamination inside the material. Different simulation methods are developed in recent years for different physical features of mechanical systems like vibration and acoustic. Nonlinear fractures are analyzed and identified for different locations in this paper. The main idea of this work is to perform dynamic analysis on different types of materials (from normal homogeneous material to complex composite laminates). Technical factors like cracks, voids, interfaces and the damages’ locations are evaluated. In this project the modal analysis is performed on different types of materials. The results could be helpful in finding modal frequencies, natural frequencies, Time domain and fast Fourier transform (FFT) in industrial applications.

Keywords: Finite element method, dynamic analysis, vibration and acoustic, composite, crack, delamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3633
2152 Numerical Modeling of Direct Shear Tests on Sandy Clay

Authors: R. Ziaie Moayed , S. Tamassoki , E. Izadi

Abstract:

Investigation of sandy clay behavior is important since urban development demands mean that sandy clay areas are increasingly encountered, especially for transportation infrastructures. This paper presents the results of the finite element analysis of the direct shear test (under three vertical loading 44, 96 and 192 kPa) and discusses the effects of different parameters such as cohesion, friction angle and Young's modulus on the shear strength of sandy clay. The numerical model was calibrated against the experimental results of large-scale direct shear tests. The results have shown that the shear strength was increased with increase in friction angle and cohesion. However, the shear strength was not influenced by raising the friction angle at normal stress of 44 kPa. Also, the effect of different young's modulus factors on stress-strain curve was investigated.

Keywords: Shear strength, Finite element analysis, Large direct shear test, Sandy clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5453
2151 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit

Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao

Abstract:

The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.

Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3627
2150 Efficiency of Post-Tensioning Method for Seismic Retrofitting of Pre-Cast Cylindrical Concrete Reservoirs

Authors: M.E.Karbaschi, R.Goudarzizadeh, N.Hedayat

Abstract:

Cylindrical concrete reservoirs are appropriate choice for storing liquids as water, oil and etc. By using of the pre-cast concrete reservoirs instead of the in-situ constructed reservoirs, the speed and precision of the construction would considerably increase. In this construction method, wall and roof panels would make in factory with high quality materials and precise controlling. Then, pre-cast wall and roof panels would carry out to the construction site for assembling. This method has a few faults such as: the existing weeks in connection of wall panels together and wall panels to foundation. Therefore, these have to be resisted under applied loads such as seismic load. One of the innovative methods which was successfully applied for seismic retrofitting of numerous pre-cast cylindrical water reservoirs in New Zealand, using of the high tensile cables around the reservoirs and post-tensioning them. In this paper, analytical modeling of wall and roof panels and post-tensioned cables are carried out with finite element method and the effect of height to diameter ratio, post-tensioning force value, liquid level in reservoir, installing position of tendons on seismic response of reservoirs are investigated.

Keywords: Seismic Retrofit, Pre-Cast, Concrete Reservoir, Post-Tensioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
2149 Gluten-Free Cookies Enriched with Blueberry Pomace: Optimization of Baking Process

Authors: Aleksandra Mišan, Bojana Šarić, Nataša Nedeljković, Mladenka Pestorić, Pavle Jovanov, Milica Pojić, Jelena Tomić, Bojana Filipčev, Miroslav Hadnađev, Anamarija Mandić

Abstract:

With the aim of improving nutritional profile and antioxidant capacity of gluten-free cookies, blueberry pomace, by-product of juice production, was processed into a new food ingredient by drying and grinding and used for a gluten-free cookie formulation. Since the quality of a baked product is highly influenced by the baking conditions, the objective of this work was to optimize the baking time and thickness of dough pieces, by applying Response Surface Methodology (RSM) in order to obtain the best technological quality of the cookies. The experiments were carried out according to a Central Composite Design (CCD) by selecting the dough thickness and baking time as independent variables, while hardness, color parameters (L*, a* and b* values), water activity, diameter and short/long ratio were response variables. According to the results of RSM analysis, the baking time of 13.74min and dough thickness of 4.08mm was found to be the optimal for the baking temperature of 170°C. As similar optimal parameters were obtained by previously conducted experiment based on sensory analysis, response surface methodology (RSM) can be considered as a suitable approach to optimize the baking process.

Keywords: Baking process, blueberry pomace, gluten-free cookies, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
2148 Influence of Flexural Reinforcement on the Shear Strength of RC Beams without Stirrups

Authors: Guray Arslan, Riza S. O. Keskin

Abstract:

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and loadstrain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Keywords: Finite element, flexural reinforcement, reinforced concrete beam, shear strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
2147 De-noising Infrared Image Using OWA Based Filter

Authors: Ruchika, Munish Vashisht, S. Qamar

Abstract:

Detection of small ship is crucial task in many automatic surveillance systems which are employed for security of maritime boundaries of a country. To address this problem, image de-noising is technique to identify the target ship in between many other ships in the sea. Image de-noising technique needs to extract the ship’s image from sea background for the analysis as the ship’s image may submerge in the background and flooding waves. In this paper, a noise filter is presented that is based on fuzzy linguistic ‘most’ quantifier. Ordered weighted averaging (OWA) function is used to remove salt-pepper noise of ship’s image. Results obtained are in line with the results available by other well-known median filters and OWA based approach shows better performance.

Keywords: Linguistic quantifier, impulse noise, OWA filter, median filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
2146 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames

Authors: Kyung-Suk Choi, Hyung-Joon Kim

Abstract:

Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. The structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of traditional steel moment-resisting systems. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEMs) of unit modular frames to investigate the cyclic behavior of beam-column joints with the access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into semi-rigid connections even if there are access holes.

Keywords: Unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation, access holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687