Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers
Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre
Abstract:
In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.Keywords: Directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1128867
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883References:
[1] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter”, Optics Letters, 1997, Vol. 22, No.7.
[2] X. He, L. Yang and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides”, Optics Express, 2011.
[3] Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize and A, Adibi, “On-Chip Hybrid Photonic−Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform”, Nano Letters, 2015.
[4] T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke1, J. Dellith, U. Hübner and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers – a new route towards low-loss hybrid plasmonic modes”, Scientific Reports, 2015.
[5] R. Tellez-Limon, B. Bahari, L. Hsu, J. H. Park, A. Kodigala and B. Kanté, “Integrated metaphotonics: symmetries and confined excitation of LSP resonances in a single metallic nanoparticle”, Optics Express, 2016.
[6] A. Marini, M. Conforti, G. Della Valle, H. W. Lee, Tr. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St. J. Russell and F. Biancalana, "Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals", New Journal of Physics, 2013.
[7] B. Desiatov, I. Goykhman and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform”, Optic Express, 2011.
[8] A. Boltasseva , V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo and S. I. Bozhevolnyi, ” Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths”
[9] H. Gao, J.-C. Yang, J. Y. Lin, A. D. Stuparu, M. H. Lee, M. Mrksich and T. W. Odom, “Nano Lett.”, 2010.
[10] M. Alavirad, L. Roy and P. Berini, “IEEE J. Sel. Top. Quantum Electron”, 2014.
[11] M. Hentschel, T. Utikal, H. Giessen and M. Lippitz, “Nano Lett.”, 2012.
[12] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices”, Nat. Mater, 2010.
[13] A. Tuniz and M. A. Schmidt, “Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips”, Optics express, 2016.
[14] A. Rakic, A. Djurisic, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices”, Appl. Opt. 37, 1998.
[15] R. Bratifich, “Fabricação e caracterização de nanoestruturas metálicas para aplicações em dispositivos plasmônicos”, Master Degree Theses, Instituto de Física de São Carlos, Universidade de São Paulo, 2015.