Search results for: Touch Voltage
236 Efficiency Improvement of Wireless Power Transmission for Bio-Implanted Devices
Authors: Saad Mutashar, M. A. Hannan, S. A. Samad, A. Hussain
Abstract:
This paper deals with the modified wireless power transmission system for biomedical implanted devices. The system consists of efficient class-E power amplifier and inductive power links based on spiral circular transmitter and receiver coils. The model of the class-E power amplifier operated with 13.56 MHz is designed, discussed and analyzed in which it is achieved 87.2% of efficiency. The inductive coupling method is used to achieve link efficiency up to 73% depending on the electronic remote system resistance. The improved system powered with 3.3 DC supply and the voltage across the transmitter side is 40 V whereas, cross the receiver side is 12 V which is rectified to meet the implanted micro-system circuit requirements. The system designed and simulated by NI MULTISIM 11.02.
Keywords: Wireless Transmission, inductive coupling, implanted devices, class-E power amplifier, coils design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149235 Analysis of Polymer Surface Modifications due to Discharges Initiated by Water Droplets under High Electric Fields
Authors: Michael G. Danikas, Ramanujam Sarathi, Pavlos Ramnalis, Stefanos L. Nalmpantis
Abstract:
This paper investigates the influence of various parameters on the behaviour of water droplets on polymeric surfaces under high electric fields. An inclined plane test was carried out to understand the droplet behaviour in strong electric field. Parameters such as water droplet conductivity, droplet volume, polymeric surface roughness and droplet positioning with respect to the electrodes were studied. The flashover voltage is affected by all aforementioned parameters. The droplet positioning is in some cases more vital than the droplet volume. Surface damages were analysed using Scanning Electron Microscopy (SEM) studies and by Energy dispersive X-ray Analysis (EDAX). It is observes that magnitude of discharge have direct influence on amount of surface daKeywords: Water droplet, polymeric surface, hydrophobicity, partial discharges, SEM, EDAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030234 Design of Permanent Magnet Machines with Different Rotor Type
Authors: Tayfun Gundogdu, Guven Komurgoz
Abstract:
This paper presents design, analysis and comparison of the different rotor type permanent magnet machines. The presented machines are designed as having same geometrical dimensions and same materials for comparison. The main machine parameters of interior and exterior rotor type machines including eddy current effect, torque-speed characteristics and magnetic analysis are investigated using MAXWELL program. With this program, the components of the permanent magnet machines can be calculated with high accuracy. Six types of Permanent machines are compared with respect to their topology, size, magnetic field, air gap flux, voltage, torque, loss and efficiency. The analysis results demonstrate the effectiveness of the proposed machines design methodology. We believe that, this study will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the PM (Permanent magnet) machines which have different rotor structure.
Keywords: Motor design, Permanent Magnet, Finite-Elementmethod.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6102233 Electrical Resistivity of Subsurface: Field and Laboratory Assessment
Authors: Zulfadhli Hasan Adli, Mohd Hafiz Musa, M. N. Khairul Arifin
Abstract:
The objective of this paper is to study the electrical resistivity complexity between field and laboratory measurement, in order to improve the effectiveness of data interpretation for geophysical ground resistivity survey. The geological outcrop in Penang, Malaysia with an obvious layering contact was chosen as the study site. Two dimensional geoelectrical resistivity imaging were used in this study to maps the resistivity distribution of subsurface, whereas few subsurface sample were obtained for laboratory advance. In this study, resistivity of samples in original conditions is measured in laboratory by using time domain low-voltage technique, particularly for granite core sample and soil resistivity measuring set for soil sample. The experimentation results from both schemes are studied, analyzed, calibrated and verified, including basis and correlation, degree of tolerance and characteristics of substance. Consequently, the significant different between both schemes is explained comprehensively within this paper.Keywords: Electrical Resistivity, Granite, Soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4991232 Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods
Authors: Ahmed Amine Hachicha, Chaouki Ghenai, Abdul Kadir Hamid
Abstract:
Temperature effect on the performance of a photovoltaic module is one of the main concerns that face this renewable energy, especially in hot arid region, e.g. United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water-cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to non-cooling module and the performance of the PV module is determined for different situations. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly.
Keywords: PV cooling, solar energy, cooling methods, electrical efficiency, temperature effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3559231 Feeder Reconfiguration for Loss Reduction in Unbalanced Distribution System Using Genetic Algorithm
Authors: Ganesh. Vulasala, Sivanagaraju. Sirigiri, Ramana. Thiruveedula
Abstract:
This paper presents an efficient approach to feeder reconfiguration for power loss reduction and voltage profile imprvement in unbalanced radial distribution systems (URDS). In this paper Genetic Algorithm (GA) is used to obtain solution for reconfiguration of radial distribution systems to minimize the losses. A forward and backward algorithm is used to calculate load flows in unbalanced distribution systems. By simulating the survival of the fittest among the strings, the optimum string is searched by randomized information exchange between strings by performing crossover and mutation. Results have shown that proposed algorithm has advantages over previous algorithms The proposed method is effectively tested on 19 node and 25 node unbalanced radial distribution systems.Keywords: Distribution system, Load flows, Reconfiguration, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3251230 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary
Authors: Mark Watson, J.-F. Bousquet, Adam Forget
Abstract:
A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.Keywords: Magnetic Induction, FDTD, Underwater Communication, Sommerfeld.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572229 Acoustic Noise Reduction in Single Phase SRM Drives by Random Switching Technique
Authors: Minh-Khai Nguyen, Young-Gook Jung, Young-Cheol Lim
Abstract:
It is known that if harmonic spectra are decreased, then acoustic noise also decreased. Hence, this paper deals with a new random switching strategy using DSP TMS320F2812 to decrease the harmonics spectra of single phase switched reluctance motor. The proposed method which combines random turn-on, turn-off angle technique and random pulse width modulation technique is shown. A harmonic spread factor (HSF) is used to evaluate the random modulation scheme. In order to confirm the effectiveness of the new method, the experimental results show that the harmonic intensity of output voltage for the proposed method is better than that for conventional methods.Keywords: Single phase switched reluctance motor (SRM), harmonic spread factor (HSF), random switching technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010228 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect
Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi
Abstract:
High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.
Keywords: Integration, electrokinetic, on-chip, fluid pumping, microfluidic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845227 Fabrication of Cylindrical Silicon Nanowire-Embedded Field Effect Transistor Using Al2O3 Transfer Layer
Authors: Sang Hoon Lee, Tae Il Lee, Su Jeong Lee, Jae Min Myoung
Abstract:
In order to manufacture short gap single Si nanowire (NW) field effect transistor (FET) by imprinting and transferring method, we introduce the method using Al2O3 sacrificial layer. The diameters of cylindrical Si NW addressed between Au electrodes by dielectrophoretic (DEP) alignment method are controlled to 106, 128, and 148 nm. After imprinting and transfer process, cylindrical Si NW is embedded in PVP adhesive and dielectric layer. By curing transferred cylindrical Si NW and Au electrodes on PVP-coated p++ Si substrate with 200nm-thick SiO2, 3μm gap Si NW FET fabrication was completed. As the diameter of embedded Si NW increases, the mobility of FET increases from 80.51 to 121.24 cm2/V·s and the threshold voltage moves from –7.17 to –2.44 V because the ratio of surface to volume gets reduced.
Keywords: Al2O3 Sacrificial transfer layer, cylindrical silicon nanowires, Dielectrophorestic alignment, Field effect transistor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124226 Optimal Embedded Generation Allocation in Distribution System Employing Real Coded Genetic Algorithm Method
Authors: Mohd Herwan Sulaiman, Omar Aliman, Siti Rafidah Abdul Rahim
Abstract:
This paper proposes a new methodology for the optimal allocation and sizing of Embedded Generation (EG) employing Real Coded Genetic Algorithm (RCGA) to minimize the total power losses and to improve voltage profiles in the radial distribution networks. RCGA is a method that uses continuous floating numbers as representation which is different from conventional binary numbers. The RCGA is used as solution tool, which can determine the optimal location and size of EG in radial system simultaneously. This method is developed in MATLAB. The effect of EG units- installation and their sizing to the distribution networks are demonstrated using 24 bus system.Keywords: Embedded generation (EG), load flow study, optimal allocation, real coded genetic algorithm (RCGA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906225 Experimental Parametric Investigation of Temperature Effects on 60W-QCW Diode Laser
Authors: E. Farsad, S. P. Abbasi, A. Goodarzi, M. S. Zabihi
Abstract:
Nowadays, quasi-continuous wave diode lasers are used in a widespread variety of applications. Temperature effects in these lasers can strongly influence their performance. In this paper, the effects of temperature have been experimentally investigated on different features of a 60W-QCW diode laser. The obtained results indicate that the conversion efficiency and operation voltage of diode laser decrease with the augmentation of the working temperature associated with a redshift in the laser peak wavelength. Experimental results show the emission peak wavelength of laser shifts 0.26 nm and the conversion efficiency decreases 1.76 % with the increase of temperature from 40 to 50 ̊C. Present study also shows the slope efficiency decreases gradually at low temperatures and rapidly at higher temperatures. Regarding the close dependence of the mentioned parameters to the operating temperature, it is of great importance to carefully control the working temperature of diode laser, particularly for medical applications.Keywords: diode laser, experimentally, temperature, wavelength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415224 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP
Authors: S. Boonpoke, B. Marungsri
Abstract:
This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3090223 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network
Authors: Wilfred Fritz
Abstract:
Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.
Keywords: Harmonics, power quality, pulse width modulation, total harmonic distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845222 Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup
Authors: Abbas Ali Mahmood Karwi
Abstract:
For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)Keywords: Multichannel analyzer, Spectrum, Energies, Fluids holdup, Image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734221 Flexible Sensor Array with Programmable Measurement System
Authors: Jung-Chuan Chou, Wei-Chuan Chen, Chien-Cheng Chen
Abstract:
This study is concerned with pH solution detection using 2 × 4 flexible sensor array based on a plastic polyethylene terephthalate (PET) substrate that is coated a conductive layer and a ruthenium dioxide (RuO2) sensitive membrane with the technologies of screen-printing and RF sputtering. For data analysis, we also prepared a dynamic measurement system for acquiring the response voltage and analyzing the characteristics of the working electrodes (WEs), such as sensitivity and linearity. In this condition, an array measurement system was designed to acquire the original signal from sensor array, and it is based on the method of digital signal processing (DSP). The DSP modifies the unstable acquisition data to a direct current (DC) output using the technique of digital filter. Hence, this sensor array can obtain a satisfactory yield, 62.5%, through the design measurement and analysis system in our laboratory.Keywords: Flexible sensor array, PET, RuO2, dynamic measurement, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493220 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line
Authors: Amany M. El-Zonkoly, Hussein Desouki
Abstract:
Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.
Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076219 Investigation of the Effect of Pressure Changes on the Gas Proportional Detector
Authors: S. M. Golgoun, S. M. Taheri
Abstract:
Investigation of radioactive contamination of personnel working in radiation centers to identify radioactive materials and then measure the potential contamination and eliminate it has always been considered. Various ways have been proposed to detect radiation so far and different detectors have been designed. A gas sealed proportional counter is one of these detectors which has special working conditions. In this research, a gas sealed detector of proportional counter type was made and then its various parameters were investigated. Some parameters are influential on their working conditions and one of these most important parameters is the internal pressure of the proportional gas-filled detector. In this experimental research, we produced software for examination and altering high voltage, registering data, and calculating efficiency of the detector. By this, we investigated different gas pressure effects on detector efficiency and proposed optimizing working conditions of this detector. After reviewing the results, we suggested a range between 20-30 mbar pressure for this gas sealed detector.
Keywords: Gas sealed detector, proportional detector, gas pressure measurement, counter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 354218 Enhance Power Quality by HVDC System, Comparison Technique between HVDC and HVAC Transmission Systems
Authors: Smko Zangana, Ergun Ercelebi
Abstract:
The alternating current is the main power in all industries and other aspects especially for the short and mid distances, but as far as long a distance which exceeds 500 KMs, using the alternating current technically will face many difficulties and more costs because it's difficult to control the current and also other restrictions. Therefore, recently those reasons led to building transmission lines HVDC to transmit power for long distances. This document presents technical comparison and assessments for power transmission system among distances either ways and studying the stability of the system regarding the proportion of losses in the actual power sent and received between both sides in different systems and also categorizing filters used in the HVDC system and its impact and effect on reducing Harmonic in the power transmission. MATLAB /Simulink simulation software is used to simulate both HVAC & HVDC power transmission system topologies.Keywords: HVAC power system, HVDC power system, power system simulation (MATLAB), the alternating current, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507217 Design and Analysis of a Low Power High Speed 1 Bit Full Adder Cell Based On TSPC Logic with Multi-Threshold CMOS
Authors: Ankit Mitra
Abstract:
An adder is one of the most integral component of a digital system like a digital signal processor or a microprocessor. Being an extremely computationally intensive part of a system, the optimization for speed and power consumption of the adder is of prime importance. In this paper we have designed a 1 bit full adder cell based on dynamic TSPC logic to achieve high speed operation. A high threshold voltage sleep transistor is used to reduce the static power dissipation in standby mode. The circuit is designed and simulated in TSPICE using TSMC 180nm CMOS process. Average power consumption, delay and power-delay product is measured which showed considerable improvement in performance over the existing full adder designs.
Keywords: CMOS, TSPC, MTCMOS, ALU, Clock gating, power gating, pipelining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074216 Behavioral Study of TCSC Device – A MATLAB/Simulink Implementation
Authors: S. Meikandasivam, Rajesh Kumar Nema, Shailendra Kumar Jain
Abstract:
A basic conceptual study of TCSC device on Simulink is a teaching aid and helps in understanding the rudiments of the topic. This paper thus stems out from basics of TCSC device and analyzes the impedance characteristics and associated single & multi resonance conditions. The Impedance characteristics curve is drawn for different values of inductance in MATLAB using M-files. The study is also helpful in estimating the appropriate inductance and capacitance values which have influence on multi resonance point in TCSC device. The capacitor voltage, line current, thyristor current and capacitor current waveforms are discussed briefly as simulation results. Simulink model of TCSC device is given and corresponding waveforms are analyzed. The subsidiary topics e.g. power oscillation damping, SSR mitigation and transient stability is also brought out.
Keywords: TCSC device, Impedance characteristics, Resonance point, Simulink model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5448215 A Micro-Watt Second Order Filter for a Chopper Stabilized MEMS Pressure Sensor Interface
Authors: Arup K. George, Wai Pan Chan, Zhi Hui Kong, Minkyu Je
Abstract:
This paper describes a low-power second-order filter for a continuous-time chopper stabilized capacitive sensor interface, integrated with a fully differential post-CMOS surface-micromachined MEMS pressure sensor. The circuit uses a single-ended folded-cascode operational amplifier and two GM-C filters connected in cascade. The circuit is realized in a 0.18 μm CMOS process and offers differential to single-ended conversion. The novelty of the scheme is the cascade of two GM-C filters to achieve a second-order filter while minimizing power dissipation. The simulated filter cutoff frequency is 1.14 kHz at common-mode voltage 1.65 V, operating from a 3.3 V supply while dissipating 172μW of power. The filter achieves an operating range of 1V for an output load of 1MOhm and 10pF.Keywords: Chopper Stabilization, MEMS, Pressure Sensors, Low Pass Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104214 Double Loop Control of H-Bridge DC Chopper Fed Permanent Magnet DC Motor Drives Using Low Cost Hardware
Authors: Zin Maw Tun, Tun Lin Naing
Abstract:
This paper presents the two loop proportional integral (PI) controller for speed control of permanent magnet DC motor (PMDC) motor drive with H-bridge DC chopper. PMDC motors are widely used in many applications because of having a good performance and it is easy to apply the speed control. The speed can be adjusted by using armature voltage control as it had only the armature circuit. H-bridge DC chopper circuit is used to obtain the desired speed in any direction. In this system, the two loop PI controller is designed by using pole-zero cancellation method. The speed and current controller gains are considered depending on the sampling frequency of the microcontroller. An Arduino IO package is used to implement the control algorithm. Both simulation and experimental results are presented to prove the correctness of the mathematical model.Keywords: Arduino IO package, double loop PI controller, H-bridge DC chopper, low cost hardware, PMDC motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821213 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board
Authors: Anil Kumar Pandey
Abstract:
Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.
Keywords: Channel simulation, electromagnetic simulation, power-aware signal integrity analysis, power integrity, PIPro.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290212 Irreversibility and Electrochemical Modeling of GT-SOFC Hybrid System and Parametric Analysis on Performance of Fuel Cell
Authors: R. Mahjoub, K. Maghsoudi Mehraban
Abstract:
Since the heart of the hybrid system is the fuel cell and it has vital impact on efficiency and performance of cycle, in this study, the major modeling of electrochemical reaction within the fuel cell is analyzed. Also, solid oxide fuel cell is integrated with the gas turbine and thermodynamic analysis on different elements of hybrid system is applied. Next, in predefined operational points of hybrid cycle, the simulation results are obtained. Then, different source of irreversibility in fuel cell is modeled and influence of different major parameters on different irreversibility is computed and applied. Then, the effect of important parameters such as thickness and surface of electrolyte fuel cell are simulated in fuel cell and its dependency to these parameters is explained. At the end of the paper, different impact of parameters on fuel cell with a gas turbine and current density and voltage of fuel cell are simulated.Keywords: Electrochemical analysis, Gas turbine, Hybrid system, Irreversibility analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509211 Analysis and Design of a Novel Active Soft Switched Phase-Shifted Full Bridge Converter
Authors: Naga Brahmendra Yadav Gorla, Dr. Lakshmi Narasamma N
Abstract:
This paper proposes an active soft-switching circuit for bridge converters aiming to improve the power conversion efficiency. The proposed circuit achieves loss-less switching for both main and auxiliary switches without increasing the main switch current/voltage rating. A winding coupled to the primary of power transformer ensures ZCS for the auxiliary switches during their turn-off. A 350 W, 100 kHz phase shifted full bridge (PSFB) converter is built to validate the analysis and design. Theoretical loss calculations for proposed circuit is presented. The proposed circuit is compared with passive soft switched PSFB in terms of efficiency and loss in duty cycle.Keywords: soft switching, passive soft switching, ZVS, ZCS, PSFB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724210 High-Resolution 12-Bit Segmented Capacitor DAC in Successive Approximation ADC
Authors: Wee Leong Son, Hasmayadi Abdul Majid, Rohana Musa
Abstract:
This paper study the segmented split capacitor Digital-to-Analog Converter (DAC) implemented in a differentialtype 12-bit Successive Approximation Analog-to-Digital Converter (SA-ADC). The series capacitance split array method employed as it reduced the total area of the capacitors required for high resolution DACs. A 12-bit regular binary array structure requires 2049 unit capacitors (Cs) while the split array needs 127 unit Cs. These results in the reduction of the total capacitance and power consumption of the series split array architectures as to regular binary-weighted structures. The paper will show the 12-bit DAC series split capacitor with 4-bit thermometer coded DAC architectures as well as the simulation and measured results.Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Low voltage ADC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9562209 Optimal Placement of DG in Distribution System to Mitigate Power Quality Disturbances
Authors: G.V.K Murthy, S. Sivanagaraju, S. Satyanarayana, B. Hanumantha Rao
Abstract:
Distributed Generation (DG) systems are considered an integral part in future distribution system planning. Appropriate size and location of distributed generation plays a significant role in minimizing power losses in distribution systems. Among the benefits of distributed generation is the reduction in active power losses, which can improve the system performance, reliability and power quality. In this paper, Artificial Bee Colony (ABC) algorithm is proposed to determine the optimal DG-unit size and location by loss sensitivity index in order to minimize the real power loss, total harmonic distortion (THD) and voltage sag index improvement. Simulation study is conducted on 69-bus radial test system to verify the efficacy of the proposed method.
Keywords: Distributed generation, artificial bee colony method, loss reduction, radial distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861208 Impact of Height of Silicon Pillar on Vertical DG-MOSFET Device
Authors: K. E. Kaharudin, A. H. Hamidon, F. Salehuddin
Abstract:
Vertical Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is believed to suppress various short channel effect problems. The gate to channel coupling in vertical DG-MOSFET are doubled, thus resulting in higher current density. By having two gates, both gates are able to control the channel from both sides and possess better electrostatic control over the channel. In order to ensure that the transistor possess a superb turn-off characteristic, the subs-threshold swing (SS) must be kept at minimum value (60-90mV/dec). By utilizing SILVACO TCAD software, an n-channel vertical DG-MOSFET was successfully designed while keeping the sub-threshold swing (SS) value as minimum as possible. From the observation made, the value of sub-threshold swing (SS) was able to be varied by adjusting the height of the silicon pillar. The minimum value of sub-threshold swing (SS) was found to be 64.7mV/dec with threshold voltage (VTH) of 0.895V. The ideal height of the vertical DG-MOSFET pillar was found to be at 0.265 µm.
Keywords: DG-MOSFET, pillar, SCE, vertical
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924207 Improvement in Silicon on Insulator Devices using Strained Si/SiGe Technology for High Performance in RF Integrated Circuits
Authors: Morteza Fathipour, Samira Omidbakhsh, Kimia Khodayari
Abstract:
RF performance of SOI CMOS device has attracted significant amount of interest recently. In order to improve RF parameters, Strained Si/Relaxed Si0.8Ge0.2 investigated as a replacement for Si technology .Enhancement of carrier mobility associated with strain engineering makes Strained Si a promising candidate for improving RF performance of CMOS technology. From the simulation, the cut-off frequency is estimated to be 224 GHZ, whereas in SOI at similar bias is about 188 GHZ. Therefore, Strained Si exhibits 19% improvement in cut-off frequency over similar Si counterpart. In this paper, Ion/Ioff ratio is studied as one of the key parameters in logic and digital application. Strained Si/SiGe demonstrates better Ion/Ioff characteristic than SOI, in similar channel length of 100 nm.Another important key analog figures of merit such as Early Voltage (VEA) ,transconductance vs drain current (gm /Ids) are studied. They introduce the efficiency of the devices to convert dc power into ac frequency.Keywords: cut-off frequency, RF application, Silicon oninsulator, Strained Si/SiGe on insulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741