Search results for: Short Time Fourier Transform (STFT)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7665

Search results for: Short Time Fourier Transform (STFT)

6945 Integration of Asian Stock Markets

Authors: Noor A. Auzairy, Rubi Ahmad, Catherine S.F. Ho, Ros Z. Z. Sapian

Abstract:

This paper is to explore the relationship and the level of stock market integration of the Asian countries, primarily concentrating on Malaysia, Thailand, Indonesia, and South Korea, with the world from January 1997 to December 2009. The degree of short-run and long-run stock market integration of those Asian countries are analyzed in order to determine the significance of series of regional and world financial crises, liberalization policies and other financial reforms in influencing the level of stock market integration. To test for cointegration, this paper applies coefficient correlation, univariate regression analyses, cointegration tests, and vector autoregressive models (VAR) by using the four Asian stock markets main indices and the MSCI World index. The empirical findings from this work reveal that there is no long-run stock market integration for the four countries and the world market. However, there is short run integration.

Keywords: Asia, integration, relationship, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
6944 Solutions of Fuzzy Transportation Problem Using Best Candidates Method and Different Ranking Techniques

Authors: M. S. Annie Christi

Abstract:

Transportation Problem (TP) is based on supply and demand of commodities transported from one source to the different destinations. Usual methods for finding solution of TPs are North-West Corner Rule, Least Cost Method Vogel’s Approximation Method etc. The transportation costs tend to vary at each time. We can use fuzzy numbers which would give solution according to this situation. In this study the Best Candidate Method (BCM) is applied. For ranking Centroid Ranking Technique (CRT) and Robust Ranking Technique have been adopted to transform the fuzzy TP and the above methods are applied to EDWARDS Vacuum Company, Crawley, in West Sussex in the United Kingdom. A Comparative study is also given. We see that the transportation cost can be minimized by the application of CRT under BCM.

Keywords: Best candidates method, centroid ranking technique, robust ranking technique, transportation problem, fuzzy transportation problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
6943 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber

Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen

Abstract:

Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.

Keywords: Coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
6942 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneouvre modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in groundtrack as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions. 

Keywords: Flight Dynamics System, Orbit Propagation, Satellite Ephemeris, Thailand’s Earth Observation Satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3046
6941 Reversible, Embedded and Highly Scalable Image Compression System

Authors: Federico Pérez González, Iñaki Goirizelaia Ordorika, Pedro Iriondo Bengoa

Abstract:

In this work a new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuous-tone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different importance levels from which the bit stream will be generated. The subcomponents of each importance level are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several improvement levels.

Keywords: Image compression, wavelet transform, highly scalable, reversible transform, embedded, subcomponents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
6940 Application of a Similarity Measure for Graphs to Web-based Document Structures

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser

Abstract:

Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
6939 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: Time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209
6938 Airplane Stability during Climb/Descend Phase Using a Flight Dynamics Simulation

Authors: Niloufar Ghoreishi, Ali Nekouzadeh

Abstract:

The stability of the flight during maneuvering and in response to probable perturbations is one of the most essential features of an aircraft that should be analyzed and designed for. In this study, we derived the non-linear governing equations of aircraft dynamics during the climb/descend phase and simulated a model aircraft. The corresponding force and moment dimensionless coefficients of the model and their variations with elevator angle and other relevant aerodynamic parameters were measured experimentally. The short-period mode and phugoid mode response were simulated by solving the governing equations numerically and then compared with the desired stability parameters for the particular level, category, and class of the aircraft model. To meet the target stability, a controller was designed and used. This resulted in significant improvement in the stability parameters of the flight.

Keywords: Flight stability, phugoid mode, short period mode, climb phase, damping coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207
6937 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy

Authors: Isao Tomita

Abstract:

The detection of environmental gases, 12CO2, 13CO2, and CH4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO2 of a 3-% CO2 gas at 2 μm with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO2 peaks. In addition, the detection of 12CO2 peaks of a 385-ppm (0.0385-%) CO2 gas in the air is made at 2 μm with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH4 in a small area are attempted. For a 100-% CH4 gas trapped in a ∼ 1 mm3 glass container, the absorption peaks of CH4 are obtained at 1.65 μm with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.

Keywords: Environmental Gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
6936 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification

Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde

Abstract:

The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.

Keywords: ATM, ATM Fraud, E-banking, Prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
6935 Existence and Uniqueness of Periodic Solution for a Discrete-time SIR Epidemic Model with Time Delays and Impulses

Authors: Ling Liu, Yuan Ye

Abstract:

In this paper, a discrete-time SIR epidemic model with nonlinear incidence rate, time delays and impulses is investigated. Sufficient conditions for the existence and uniqueness of periodic solutions are obtained by using contraction theorem and inequality techniques. An example is employed to illustrate our results.

Keywords: Discrete-time SIR epidemic model, time delay, nonlinear incidence rate, impulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
6934 A Holistic Workflow Modeling Method for Business Process Redesign

Authors: Heejung Lee

Abstract:

In a highly competitive environment, it becomes more important to shorten the whole business process while delivering or even enhancing the business value to the customers and suppliers. Although the workflow management systems receive much attention for its capacity to practically support the business process enactment, the effective workflow modeling method remain still challenging and the high degree of process complexity makes it more difficult to gain the short lead time. This paper presents a workflow structuring method in a holistic way that can reduce the process complexity using activity-needs and formal concept analysis, which eventually enhances the key performance such as quality, delivery, and cost in business process.

Keywords: Workflow management, reengineering, formal concept analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
6933 Optical Flow Based System for Cross Traffic Alert

Authors: Giuseppe Spampinato, Salvatore Curti, Ivana Guarneri, Arcangelo Bruna

Abstract:

This document describes an advanced system and methodology for Cross Traffic Alert (CTA), able to detect vehicles that move into the vehicle driving path from the left or right side. The camera is supposed to be not only on a vehicle still, e.g. at a traffic light or at an intersection, but also moving slowly, e.g. in a car park. In all of the aforementioned conditions, a driver’s short loss of concentration or distraction can easily lead to a serious accident. A valid support to avoid these kinds of car crashes is represented by the proposed system. It is an extension of our previous work, related to a clustering system, which only works on fixed cameras. Just a vanish point calculation and simple optical flow filtering, to eliminate motion vectors due to the car relative movement, is performed to let the system achieve high performances with different scenarios, cameras and resolutions. The proposed system just uses as input the optical flow, which is hardware implemented in the proposed platform and since the elaboration of the whole system is really speed and power consumption, it is inserted directly in the camera framework, allowing to execute all the processing in real-time.

Keywords: Clustering, cross traffic alert, optical flow, real time, vanishing point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
6932 Optimizing the Project Delivery Time with Time Cost Trade-offs

Authors: Wei Lo, Ming-En Kuo

Abstract:

While to minimize the overall project cost is always one of the objectives of construction managers, to obtain the maximum economic return is definitely one the ultimate goals of the project investors. As there is a trade-off relationship between the project time and cost, and the project delivery time directly affects the timing of economic recovery of an investment project, to provide a method that can quantify the relationship between the project delivery time and cost, and identify the optimal delivery time to maximize economic return has always been the focus of researchers and industrial practitioners. Using genetic algorithms, this study introduces an optimization model that can quantify the relationship between the project delivery time and cost and furthermore, determine the optimal delivery time to maximize the economic return of the project. The results provide objective quantification for accurately evaluating the project delivery time and cost, and facilitate the analysis of the economic return of a project.

Keywords: Time-Cost Trade-Off, Genetic Algorithms, Resource Integration, Economic return.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
6931 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
6930 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: River stage-discharge process, LSSVM, discrete wavelet transform (DWT), ensemble empirical decomposition mode (EEMD), multi-station modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667
6929 Role of Investment in the Course of Economic Growth in Pakistan

Authors: Maqbool Hussain Sial, Maaida Hussain Hashmi, Sofia Anwar

Abstract:

The present research was focused to investigate the role of investment in the course of economic growth with reference to Pakistan. The study analyzed the role of the public and private investment and impact of the political and macroeconomic uncertainty on economic growth of Pakistan by using the vector autoregressive approach (VAR). In long-run both public and private investment showed a positive impact on economic growth but the growth was largely driven by private investment as compared to public investment. Government consumption expenditure, economic uncertainty and political instability hampered the economic growth of Pakistan. In short-run the private investment positively influences the growth but there was negative and insignificant effect of the public investment and government consumption expenditure on the growth. There was a positive relationship found between economic uncertainty (proxy for inflation) and GDP in short run.

Keywords: Investment, Government Consumption, Growth, Co-integration, Pakistan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
6928 Stability Analysis of Mutualism Population Model with Time Delay

Authors: Rusliza Ahmad, Harun Budin

Abstract:

This paper studies the effect of time delay on stability of mutualism population model with limited resources for both species. First, the stability of the model without time delay is analyzed. The model is then improved by considering a time delay in the mechanism of the growth rate of the population. We analyze the effect of time delay on the stability of the stable equilibrium point. Result showed that the time delay can induce instability of the stable equilibrium point, bifurcation and stability switches.

Keywords: Bifurcation, Delay margin, Mutualism population model, Time delay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
6927 Genetic Algorithms Multi-Objective Model for Project Scheduling

Authors: Elsheikh Asser

Abstract:

Time and cost are the main goals of the construction project management. The first schedule developed may not be a suitable schedule for beginning or completing the project to achieve the target completion time at a minimum total cost. In general, there are trade-offs between time and cost (TCT) to complete the activities of a project. This research presents genetic algorithms (GAs) multiobjective model for project scheduling considering different scenarios such as least cost, least time, and target time.

Keywords: Genetic algorithms, Time-cost trade-off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
6926 Impact of Revenue Gap on Budget Deficit, Debt Burden and Economic Growth: An Evidence from Pakistan

Authors: M. W. Siddiqi, M. Ilyas

Abstract:

Availability and mobilization of revenue is the main essential with which an economy is managed and run. While planning or while making the budgets nations set revenue targets to be achieved. But later when the accounts are closed the actual collections of revenue through taxes or even the non-tax revenue collection would invariably be different as compared to the initial estimates and targets set to be achieved. This revenue-gap distorts the whole system and the economy disturbing all the major macroeconomic indicators. This study is aimed to find out short and long term impact of revenue gap on budget deficit, debt burden and economic growth on the economy of Pakistan. For this purpose the study uses autoregressive distributed lag approach to cointegration and error correction mechanism on three different models for the period 1980 to 2009. The empirical results show that revenue gap has a short and long run relationship with economic growth and budget deficit. However, revenue gap has no impact on debt burden.

Keywords: Revenue Gap, Economic Growth, Budget Deficit, Debt Burden

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
6925 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method

Authors: Yanan Yang, Zhigang Wang, Xiang Chen

Abstract:

This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.

Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
6924 Phasor Analysis of a Synchronous Generator: A Bond Graph Approach

Authors: Israel Núñez-Hernández, Peter C. Breedveld, Paul B. T. Weustink, Gilberto Gonzalez-A

Abstract:

This paper presents the use of phasor bond graphs to obtain the steady-state behavior of a synchronous generator. The phasor bond graph elements are built using 2D multibonds, which represent the real and imaginary part of the phasor. The dynamic bond graph model of a salient-pole synchronous generator is showed, and verified viz. a sudden short-circuit test. The reduction of the dynamic model into a phasor representation is described. The previous test is executed on the phasor bond graph model, and its steady-state values are compared with the dynamic response. Besides, the widely used power (torque)-angle curves are obtained by means of the phasor bond graph model, to test the usefulness of this model.

Keywords: Bond graphs, complex power, phasors, synchronous generator, short-circuit, open-circuit, power-angle curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
6923 A Trainable Neural Network Ensemble for ECG Beat Classification

Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour

Abstract:

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

Keywords: ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
6922 Real-Time 3D City Generation using Shape Grammars with LOD Variations

Authors: Pearl Goswell, Jun Jo

Abstract:

Creating3D environments, including characters and cities, is a significantly time consuming process due to a large amount of workinvolved in designing and modelling.There have been a number of attempts to automatically generate 3D objects employing shape grammars. However it is still too early to apply the mechanism to real problems such as real-time computer games.The purpose of this research is to introduce a time efficient and cost effective method to automatically generatevarious 3D objects for real-time 3D games. This Shape grammar-based real-time City Generation (RCG) model is a conceptual model for generating 3Denvironments in real-time and can be applied to 3D gamesoranimations. The RCG system can generate even a large cityby applying fundamental principles of shape grammars to building elementsin various levels of detailin real-time.

Keywords: real-time city generation, shape grammars, 3D games, 3D modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
6921 Capacity Optimization for Local and Cooperative Spectrum Sensing in Cognitive Radio Networks

Authors: Ayman A. El-Saleh, Mahamod Ismail, Mohd. A. M. Ali, Ahmed N. H. Alnuaimy

Abstract:

The dynamic spectrum allocation solutions such as cognitive radio networks have been proposed as a key technology to exploit the frequency segments that are spectrally underutilized. Cognitive radio users work as secondary users who need to constantly and rapidly sense the presence of primary users or licensees to utilize their frequency bands if they are inactive. Short sensing cycles should be run by the secondary users to achieve higher throughput rates as well as to provide low level of interference to the primary users by immediately vacating their channels once they have been detected. In this paper, the throughput-sensing time relationship in local and cooperative spectrum sensing has been investigated under two distinct scenarios, namely, constant primary user protection (CPUP) and constant secondary user spectrum usability (CSUSU) scenarios. The simulation results show that the design of sensing slot duration is very critical and depends on the number of cooperating users under CPUP scenario whereas under CSUSU, cooperating more users has no effect if the sensing time used exceeds 5% of the total frame duration.

Keywords: Capacity, cognitive radio, optimization, spectrumsensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
6920 Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models

Authors: Tomohiro Hachino, Hitoshi Takata, Seiji Fukushima, Yasutaka Igarashi

Abstract:

This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach. The separable least-squares approach that combines the linear least-squares method and genetic algorithm is applied to train these Gaussian process models. Simulation results are shown to demonstrate the effectiveness of the proposed electric load forecasting.

Keywords: Direct method, electric load forecasting, Gaussian process model, genetic algorithm, separable least-squares method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
6919 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions

Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin

Abstract:

One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.

Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
6918 Antioxidant Responses to Different Exposure Regimes of Kazakhstan Light Crude Oil in Livers of Male Albino Rats

Authors: K. Mahmoud, T. Shalahmetova, B. Umbayev, Sh. Deraz

Abstract:

Biochemical investigations were carried out to assess the effect of different exposure regimes of Kazakhstan crude oil (KCO) on hepatic antioxidant defense system in albino rats. Contaminants were delivered under two different dosing regimes, with all treatments receiving the same total contaminant load by the end of the exposure period. Rats in regime A injected with KCO once at a dose of 6 ml/kg bw while in regime B injected multiply at a dose of 1.5 ml/kg bw on day 1, 3, 5 and 8. Antioxidant biomarkers were measured in hepatic tissue after 1, 3, 5 and 8 days. Significant induction was observed in serum aminotransferases (ALT, AST) (p<0.01) and hepatic Glutathione-S-transferase (GST) (p<0.05) in the two exposure regimes, with the majority of significant induction occurring in regime A. Superoxide dismutase (SOD) increased 1-d after injection (p<0.01) but the increase was reduced time dependently thereafter while after 8-d induced again (p<0.01). Malondialdehyde (MDA) significantly induced after 3 and 5-d (p<0.05) in regime A while in regime B was not changed significantly (p>0.05) at short time after exposure. However, there was significant increase after 8-d (p<0.01). Histological examination indicates that crude oil induced pathologic changes from inflammatory cells infiltration to hemorrhage and necrosis of hepatocytes. Acute exposure to crude oil adversely affect hepatic cell so human must avoid such exposure.

Keywords: Kazakhstan crude oil, Antioxidant biomarkers, Histological examination, Dose regime, Rats

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
6917 Adaptive Dynamic Time Warping for Variable Structure Pattern Recognition

Authors: S. V. Yendiyarov

Abstract:

Pattern discovery from time series is of fundamental importance. Particularly, when information about the structure of a pattern is not complete, an algorithm to discover specific patterns or shapes automatically from the time series data is necessary. The dynamic time warping is a technique that allows local flexibility in aligning time series. Because of this, it is widely used in many fields such as science, medicine, industry, finance and others. However, a major problem of the dynamic time warping is that it is not able to work with structural changes of a pattern. This problem arises when the structure is influenced by noise, which is a common thing in practice for almost every application. This paper addresses this problem by means of developing a novel technique called adaptive dynamic time warping.

Keywords: Pattern recognition, optimal control, quadratic programming, dynamic programming, dynamic time warping, sintering control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
6916 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.

As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920