
1 

Abstract—This study presented hybrid pre-processing approach 
along with a conceptual model to enhance the accuracy of river 
discharge prediction. In order to achieve this goal, Ensemble 
Empirical Mode Decomposition algorithm (EEMD), Discrete 
Wavelet Transform (DWT) and Mutual Information (MI) were 
employed as a hybrid pre-processing approach conjugated to Least 
Square Support Vector Machine (LSSVM). A conceptual strategy 
namely multi-station model was developed to forecast the Souris 
River discharge more accurately. The strategy used herein was 
capable of covering uncertainties and complexities of river discharge 
modeling. DWT and EEMD was coupled, and the feature selection 
was performed for decomposed sub-series using MI to be employed 
in multi-station model. In the proposed feature selection method, 
some useless sub-series were omitted to achieve better performance. 
Results approved efficiency of the proposed DWT-EEMD-MI 
approach to improve accuracy of multi-station modeling strategies. 
 

Keywords—River stage-discharge process, LSSVM, discrete 
wavelet transform (DWT), ensemble empirical decomposition mode 
(EEMD), multi-station modeling.  

I. INTRODUCTION 

HE collection of continuous discharge measurements is 
very hard mission, and therefore, a stage-discharge (Q-H) 

relationship is commonly used to estimate stream discharges 
as measured stage values. Rating curves are widely used to 
determine the Q-H relationship, although they are not able to 
provide sufficiently accurate results. A Q-H rating curve is a 
relationship between stream stage (water level) and discharge 
for a particular section of a stream. Usually regression-based 
power equations are used to analysis Q-H relation [1]. 
However, using Q-H relationship for different river conditions 
might not be capable enough. In the other words, to capture 
precise results, various researchers suggested to apply AI-
based models that proved to provide more accurate outcome in 
comparison to Q-H relationship [2]. 

In modeling process based on AI approaches, some of the 
input variables might present correlation, noise or have no 
significant relationship with target variables and generally are 
not equally informative. Shannon entropy-based measures are 
applied in this study to extract dominant inputs of the 
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proposed models for discharge-stage modeling [3], [5].  
The present study is aimed to predict the daily river stage-

discharge process and enhance the capability of modeling 
scenarios by using Hybrid discreet wavelet transform (DWT)- 
EEMD-mutual information (MI) and least square support 
vector machine (LSSVM). To achieve this goal, capability of 
WT-EEMD-MI based multi-station model was investigated 
and improvements were studied, on the other hand, results 
were compared with classic rating curve (RC). 

II. MATERIAL AND METHODS 

A. Study Area and Used Data 

Souris River is a river in central North America. It is about 
700 km in length and drains about 61,100 km2. The Souris 
River flows through the Melita, Hartney, Souris and 
Wawanesa tributries and on to its meeting with the 
Assiniboine River at Treesbank. Discharge of the river in 
varies from 4.2 m3/s to about 85 m3/s in downstream. There 
are two large dams in upstream of the river (Saskatchewan) 
namely Rafferty Dam and Alameda Dam, which were 
constructed, to reduce flood peaks on the Souris River. Table I 
demonstrates the characteristics of the Souris River and used 
data.  

Selected stations (Sherwood, Foxholm, Minot, Verendry, 
Bantry and Westhope) as shown in Fig. 1, are in continued 
form which is suitable to be used in the proposed models. 
Also, dataset was separated into two parts; first division 
including 70 percent of total data as calibration dataset, and 
the rest was considered as verification dataset.  

 
TABLE I 

CHARACTERISTICS OF SIX SUB-BASINS IN THE SOURIS RIVER 

Hydrometric 
station 

Stations 
Discharge 

(m3/s) 

Stage (m) 
Max. 

Max. 
discharge 

(m3/s) 

Min. 
discharge 

(m3/s) 

Area 
(m2) 

Sherwood 4.1 1.02 10.8 0.36 23154.4 

Foxholm 6.74 2.15 11.44 0 24527.2 

Minot 7.28 1.65 12.32 0.07 27453.9 

Verendrye 13.74 1.96 14.78 0.31 29266.9 

Bantry 14.13 2.28 17.28 0.42 31.856.8

Westhope 15.66 3.05 14.8 0.12 43770.8 
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Fig. 1 The geographic location of Souris River and location of hydrometric stations 
 

 

Fig. 2 Schematic of predicting via multi-station model. The figure displays the input data selection and process of prediction 
 

B. Proposed and Applied Methodologies 

Since discharge data include broad domain of values, they 
have to be pre-processed. It is proposed to use the DWT to 
decompose the original time series into the approximation and 
the detail components. Secondary decompose was performed 
by applying the EEMD to the detail components obtained 
from DWT into a new subseries of Intrinsic Mode Functions 
(IMFs). The goal of this step is to additionally decrease of the 
non-stationarity of the detail components captured from DWT. 
Although decomposing twice might led to required outcome, 
reproduction of subseries might defect the LSSVM 
performance. For this reason, mutual information was used to 
select dominant subseries. Such a feature selection could 
increase the performance of LSSVM.  

Multi-station modeling of river discharge used in this study, 
was designed to catch the nonlinearity of the river discharge. 
For this purpose, the multi-station model was established 
according to the observed Q-H time series. The schematic of 
proposed model is shown in Fig. 2. LSSVM is the least 
squares formulation of a SVM. It was first proposed by 
Suykens and Vandewalle as a classi-fier in 1999. Unlike the 
inequality constrains in the SVM, LSSVM proposed equality 
constrains in the formulation [5]. 

Since the model is in the multi-station form, the input 
matrix was determined in a way to cover the spatio-temporal 

variation of the river discharge uncertainties by using temporal 
features of the hydrometric stations. Therefore, multiple inputs 
were set in a way that all temporal could establish a unit 
matrix. The input variables were comprised with different sets 
of antecedent and current Q-H values of the all stations to 
forecast the discharge values (Qi(t), i = 1, 2, 3… n, where n is 
the number of hydrometric stations). The multi-station model 
presents a single model which is capable enough to be 
employed instead of several models within the watershed [7]. 

The DWT is a popular method and very precise method for 
time series processing [6], [8]. While the general theory 
behind DWT is quite analogous to that of the short time 
Fourier transform (STFT), DWT allows for a completely 
flexible window function (called the mother wavelet), which 
can be changed over time based on the shape and compactness 
of the signal. Given this property, DWT can be used to 
analyze the time-frequency characteristics of any kind of time 
series. In recent years, DWT has been widely used for the 
analysis of many hydro-meteorological time series [7]. As the 
mother wavelet moves across the time series during the DWT 
process, it generates several coefficients that represent the 
similarity between the time series and the mother wavelet (at 
any specific scale). A time series is decomposed into details 
(D) and approximations (A) when using DWT. 

EEMD was proposed to solve the mode mixing issue of 
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Empirical Mode Decomposition (EMD) which specifies the 
true Intrinsic Mode Function (IMF) as the mean of an 
ensemble of trials (Wu and Huang, 2009). Each trial consists 
of the decomposition results of the signal plus a white noise of 
finite amplitude. Recently developed approach is captured 
from outcome of recent studies which have proved capability 
of white noise [9], which showed that the EMD method is an 
effective self-adaptive dyadic filter bank when applied to the 
white noise. On the other hand, studies demonstrated that 
noise could help data analysis in the EMD method. All these 
investigations promote the advent of the EEMD method. 

In the process of EEMD, a white noise is added to capture a 
uniform time–frequency space based on its components with 
various scales. By the time, signal is decomposed via EEMD, 
due to its uniformly distributed white noise; the components in 
various scales are transformed to appropriate scales of 
reference created by the white noise in the background. On the 
other hand, produced sub-series can be very noisy. However, 
due to its nature and difference of the noise in each it can be 
decreased or even completely removed in the ensemble mean 
of enough trails [4], [10]. 

In this study, the total data were separated into calibration 
and verification sets. Three different criteria were selected to 
meter the revenue of the proposed forecasting methods; the 
Root Mean Square Error (RMSE) and the determination 
coefficient (DC). The RMSE and DC were applied to exhibit 
discrepancies between predicted and observed values [11]. 

III. RESULTS AND DISCUSSION 

The rating curve (RC) is an empirical model, which extracts 
information from recorded stage values. The RC was applied 
for all 6 hydrometric stations. As an instance, Figs. 3 (A) and 
(B) demonstrate the RC for Sherwood and Minot stations. 
Results of RC using least square method led to the following 
results: 

 
Q(Sherwood)=2.7422H2.8127 

Q(Minot)=0.0281H11.313 
 
Results of modeling are demonstrated in Fig. 3 (C). Based 

on the results it was observed that results needs to be 
strengthen in terms of DC and RMSE. 

 

 

Fig. 3 (A) Results of modeling via RC for Sherwood station, (B) Results of modeling via RC for Minot station, C Overall results of RC for all 
stations 

 
In order to avoid possible conflicts with incorrect 

dimensionality of obtained formulations, it was suggested to 
use the dimensionless values. This is a prevalent scientific 
application where units of measurements are effectively 
omitted through the introduction of dimensionless ratios [7]. 
Therefore, the model construction for each sub-basin could be 
represented as: 

 

( 1) [ ( ), ( 1), ( ), ( 1)]i i i iQi t f H t H t Q t Q t                 (1) 
 
In (1), i refers to the sub-basin number (i = 1, 2, 3 . . . 6). 

Hi(t-α) is river stage values with day lag time at ith sub-basin. 
In order to develop the multi-station model for the entire 
watershed, the data of all six stations were imposed to the 
LSSVM framework. Since the Q-H values are sorely effected 
by recent conditions of watershed at daily time scale, only 
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values with two days lag times (i.e., α = 2) were used in the 
multi-station model.  

In order to find the efficient structure of proposed multi-
station model, sensitivity analysis was performed. For this 
end, six best input combinations were considered to create the 
input matrix (Table II). Table II shows the multi-station 
model’s performance for different input combinations. 
According to the obtained results, imposing pre-processed 
temporal dataset caused an increase in modeling accuracy 
(Combs. (5) and (6)). Conjugating DWT-EEMD to temporal 
features in Comb.6 donated an incredible insight to temporal 
features which caused Comb. 6 to have the best outcome. By 
comparing the obtained results for Combs. (1)–(6) (Table II), 
it could be inferred that the Comb. (6) was more efficient than 
others. The input structure of this combination was consisted 
of two temporal variables. In Table II, Qd1 means detail 
subseries 1 and Qd2(imf 6, 7) means decomposed detail 
subseries 2 via EEMD and selected imf 6 and 7 via MI and the 
rest is alike. 

IV. CONCLUDING REMARKS 

In this research, capability of LSSVM by using conceptual 
modeling scenarios were verified to discover their quantitative 
and qualitative aspects in prediction of river Q-H process. 
EEMD and WT donated incredible vision in time and 
frequency domain of data to capture the non-linear and 
seasonal properties. By capturing more correlated first and 
second detailed subseries decompositions by MI and imposing 
it to LSSVM, an increase in performance was observed. 
Especially in multivariate modeling, because of its sensitive 
structure, EEMD was applied for all detailed subseries and 
obtained results showed a good agreement with observed time 
series.  

The present study took advantage multi-station model 
which was designed to predict the river discharge in multiple-
station form by training only one LSSVM model. This 
strategy was capable of forecasting at the point of interest in a 
river or watershed by including temporal properties of the case 
study.

TABLE II 
RESULTS OF MULTI-STATION MODELING 

Combination Input matrix Calibration Verification 

  DC RMSE* DC RMSE* 

1 Q(t), Q(t-1), H(t) 0.84 0.022 0.72 0.029 

2 Q(t), Q(t-1), H(t) 0.86 0.019 0.76 0.026 

3 Q(t), H(t) 0.86 0.02 0.75 0.027 

4 Q(t), Q(t-1), H(t), H(t-1) 0.87 0.022 0.82 0.025 

5 Qd3, Qd4, Qd5, Qa 0.90 0.017 0.85 0.022 

6 Qd1(imf 8,9), Qd2(imf 6,7), Qd3, Qd4, Qd5, Qa, Ha 0.93 0.014 0.88 0.019 

* RMSE and MAE values are dimensionless due to normalization. 
 

 

Fig. 4 (A) Decomposed time series using db4-EEMD-MI (8 sub-series), (B) multi-station forecasting of Souris River discharge 
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