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Abstract—Human activity recognition (HAR) systems have
shown positive performance when recognizing repetitive activities
like walking, running, and sleeping. Water-based activities are a
reasonably new area for activity recognition. However, water-based
activity recognition has largely focused on supporting the elite
and competitive swimming population, which already has amazing
coordination and proper form. Beginner swimmers are not perfect,
and activity recognition needs to support the individual motions to
help beginners. Activity recognition algorithms are traditionally built
around short segments of timed sensor data. Using a time window
input can cause performance issues in the machine learning model.
The window’s size can be too small or large, requiring careful
tuning and precise data segmentation. In this work, we present
a method that uses a time window as the initial segmentation,
then separates the data based on the change in the sensor value.
Our system uses a multi-phase segmentation method that pulls all
peaks and valleys for each axis of an accelerometer placed on the
swimmer’s lower back. This results in high recognition performance
using leave-one-subject-out validation on our study with 20 beginner
swimmers, with our model optimized from our final dataset resulting
in an F-Score of 0.95.

Keywords—Time window, peak/valley segmentation, feature
extraction, beginner swimming, activity recognition.

I. INTRODUCTION

THE availability of commercially available, waterproof

devices has facilitated Human Activity Recognition

systems (HAR) to detect and classify water activities like

swimming and have moved away from just land-based

activities. However, researchers and device manufactures focus

on Olympic lap swimming activities (backstroke, breaststroke,

butterfly, and freestyle) and do not adequately cover beginner

or novice swimmers. Commercial devices, such as Fitbit,

Apple Watch, and Garmin watches, work well for elite

and professional swimmers but are not effective in less

regimented swimming activities. Morais et al. studied the

classification of commercial devices and found that the

accuracy decreases significantly when used by beginner

and intermediate swimmers [1]. Our research looked at

implementing a method of detecting swimming activity of all

levels by using a two-step segmentation method.

HAR research is a field that uses sensors, algorithms, and

wearable systems to identify physical activities. Researchers

have been able to integrate activity recognition in such areas
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as sports (e.g., running) [2], hobbies (e.g., playing piano) [3],

and activities of daily living (e.g., eating, taking pills, brushing

teeth) [4]. Activity recognition in these papers works by

segmenting the sensor data based on a window of time and

using the data for classification. However, determining the

proper time window is challenging and is a major effect on

the accuracy of the classification algorithm [5].

Selecting the appropriate time window can be difficult when

considering the variety of users and can be a significant

factor in the classification accuracy of the machine learning

algorithm [6]. If the system uses a short window, there may

not be enough information to grasp the activity performed.

Still, if it was too long of a window, the person could have

performed multiple activities within that time [5]. Algorithms

can misclassify data due to the lack of fidelity in the data

from a misaligned time window. Finding the perfect length for

recognizing the desired activity is complex and requires a lot

of trial and error. However, using a time window to segment

the data is currently the proper method to get a consistent

data flow for classification. Though multiple activities exist,

the window must fit the overall activity perfectly. There needs

to be another method that dynamically segments the data, and

it should not rely on a perfect static time window.

In this paper, we present a two-step method that classifies

segments of the sensor data by their axis and change in values

represented by peaks or valleys. The goal is to classify the

swimming activities not by their time window but by the

performance of the particular swimming activity’s motions.

Based on our findings, this approach reduces the issues

associated with fixed window segmentation, and its flexibility

allows our system to better support inexperienced swimmers

as opposed to many of the tools available today. Further

expanding on this research we can evaluate the performance

of each activity individually and provide proper feedback.

II. BACKGROUND

A. Limitations to Existing Swimming Activity Recognition

Research papers and commercial devices have focused

on supporting professional and elite swimmers, generally

individuals who are not beginners. Table 1 shows how the

data are collected and how machine learning algorithms are

developed/validated. Often, researchers get their participants

for the user studies from national and college swim teams.
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Fig. 1 Research and commercial representation for the data collection and machine learning algorithm development/validation in swimming activity
recognition. The activities classified for all papers is backstroke, breaststroke, freestyle, and butterfly

Additionally, existing researchers mostly utilize time windows

and segmentation methods, such as Support Vector Machine or

Random Forest. We present a method that uses a time window

as the initial segmentation, and from there, we re-segment the

data based on the overall change of sensor data within the

window.

Existing swimming activity recognition methods will

often misclassify backstroke and freestyle with either the

breaststroke or the butterfly because of the small differences

in the swimming motions. This is a consequence in the

limited data collection methods used to develop the HAR

models. Researchers will collect data in a controlled setting

where participant performs one activity at a time with an

observer to mark the exact time when the activity is performed.

Most of the participants in the study are either elite or

experienced swimmers [7], [8]. It is easier to collect swimming

data through experienced swimmers and swim teams that

can provide consistent activities. However, the accuracy of

classifying swimming strokes decreases as more beginner and

intermediate swimmers use the system. Quin et al. presented a

study that used elite swimmers using a wrist wearable device

to get 99% accuracy [9]. Quin et al. only collected elite

swimmers swimming each stroke in a collected setting. For our

study, the control always performed better because the fatigue

and exhaustion have not caused the swimmer’s performance

to decrease during each swimming stroke. They also mention

in the paper that they will expect and get less accuracy

when working with intermediate and beginner swimmers. We

collected beginner swimmers once in a controlled setting and

another in a freeform setting and got equally accurate results

with additional swimming strokes like sidestroke and treading

water.

B. Wrist-worn Commercial Devices Lack HAR Robustness

Commercial devices that use swimming activity recognition

have been tailored to support regimented, lap swimming

environments. Such features as stroke count, lap count, and

lap time are standard among commercial devices like the

Apple Watch and Fitbit are not that useful for novice

swimmers. Lee et al. discovered in a user study to examine

commercial devices’ performance that the features have a 20%

misclassification rate [10]. Because these commercial devices

are produced by corporations, it is hard to understand the

classification method used; however, for Fitbit, we discovered

they use a four second time window for segmentation based

on the patent [11]. We also discovered that the algorithms

developed could only recognize these activities with high

accuracy when used by experienced swimmers. Morais et

al. analyzed and found that the Garmin watch recognizes

all activities except butterfly at 92% accuracy [1]. Another

researcher found that the commercial device’s classification

will reduce accuracy and performance if used by beginner and

intermediate swimmers.

C. Peaks and Valley Swimming Analysis Provide Additional
Information

Researchers discovered that peaks and valleys are associated

with the swimming stroke’s single motion. Bachlin et al. found

that the peaks on the x-axis are specifically associated with

the single motion of freestyle [12]. Fantozzi et al. further

focused on using more specific phases in swimming and

discovered that breathing patterns are found within the peaks

and valleys based on sensor data [13]. Ohgi et al. found that

when the swimmer gets more fatigued, the coordination of the

individual motions decreases [14]. The individual’s physical
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limb coordination is a shared feature when distinguishing

between beginner and competitive swimming skill levels [14].

Based on all these previous papers, the importance of peaks

and valleys can tell the difference between fatigue, breathing

patterns, and proficiency level. For this reason, we built our

system around peaks and valleys to support the classification

of multiple activities in a shared window, which will enable

advanced analytics of this nature.

D. Segmentation of Data by Time Window

Using a time window for activity recognition is the most

common form of separating the data for the machine learning

algorithms. However, some papers have split from a single

time window to a multi-layer window method.

Qin et al. present a multi-window input method for their

swimming activity classier [9]. The first window segments

the overall data into large two-minute windows. The system

then uses smaller ten-second window segments as the primary

input for the machine learning algorithm. The second, smaller

window is still relatively large at ten seconds, which is

expected to have a high accuracy since the swimming stroke

is performed multiple times within that window. We use a

6-second window capable of classifying at similar accuracy

compared to overall large 2-minute window of Quin et al.

Ma et al. present a more adaptive time window in which the

method expands and contracts the window based on if there is

a change in the probability density of the data. The system’s

large overhead relies on constantly changing the window and

will increase as more activities are incorporated [15].

Cherian et al. present a two-window segment method where

the first window gets the data and a second smaller window

is used in the classification [16]. The system then selects the

most frequent label from the smaller segmented windows as

the output for the initial window.

Our work expands on previous works in this area that

modify the window concept; however, instead of using

smaller windows, we segment the data based on a median

threshold which collects all values associated with peaks

and valleys. This method supports a more adaptive approach

while removing the overhead associated with constant window

changes.

III. METHODOLOGY

A. System Implementation

The system used an HTC6500LVW mobile device that

collected 3D accelerometer data locally with a BMA250 3-axis

accelerometer that produced a range of values between -18 and

18 at 100Hz. The mobile device was stored in a waterproof

pack and placed between the user’s lower back as presented in

Fig. 2. An android application was developed specifically for

the studies and installed on the mobile device. The application

collected the sensor data and stored the information on local

storage within the device. The user could input the swimming

stroke they performed, and the labeled data would be stored

with the sensors data, providing observational data for the

researcher to use.

(a) Final prototype design
(b) Final prototype design being worn

by a swimmer

Fig. 2 Wearable device and placement location on the participant

B. Activities Captured

Our studies included lap swimming strokes (backstroke,

breaststroke, butterfly freestyle). However, as we collected

more data and read more papers on water safety, we

included two other forms of propulsion-based swimming:

treading-water and sidestroke [17], [18]. Treading water is a

commonly required swimming activity that allows the person

to be perpendicular to the water. Treading water is currently

the only way for the swimmer to get their bearings while in a

stationary position which is important for survival swimming.

Sidestroke, however, is more common in survival swimming

and is a swimming stroke that uses the least amount of energy.

The way sidestrokes work is that the individual is on their side

and uses an arm motion constantly underwater as propulsion.

C. Data Collection

For this work, the primary source of collecting participants

was a university-level beginner’s swimming course. New

participants were recruited to participate in the study across

two phases; all sessions shared the same system and sensor

placement. All data were collected at the university pool, first

in a controlled setting and second in a more freeform setting

where they wore the device during class or individual practice.

1) Controlled Study: For the controlled study, we recruited

a total of 15 participants from the university’s beginner
swimming classes. Each participant was requested to swim

(backstroke, breaststroke, butterfly, freestyle, sidestroke, and

tread water) for at most 50 meters or 2 minutes. We collected

a total of 2.6 hours of swimming data and for each swimming

stroke individual was: freestyle (32.86), backstroke (19.71),

breaststroke (25.37), butterfly (35.65), sidestroke (19.56), and

treading water (21.75).

2) Freeform Study: For the freeform environment, we

recruited a total of five participants from the university’s
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Fig. 3 Segmentation method of raw data to axis (X, Y, Z) specific
peak/valley datasets: X-Axis (Red), Y-Axis (Green), Z-Axis (Blue), Peaks

(Magenta), Valleys (Yellow)

beginner swimming classes. Each participant was requested

to wear the wearable device during class or provide up

to 30 minutes of swimming data. On the side, while the

participant was swimming, a researcher observer would track

the swimming stroke and the start and stop time. We collected

a total of 2.06 hours of swimming data.

D. Activity Recognition Evaluation Method

For evaluating the performance of the machine learning

model in human activity recognition, the following metrics

are usually performed: accuracy, f1-score, precision, and

recall [19]. Precision, recall, and f1-score are the most

common when the data is imbalanced. With our data showing

imbalanced data for each swimming stroke, we utilized the

f1-score as the primary means of evaluating our swimming

activity recognition system.

Once we found the optimal performance of the machine

learning algorithms, we used the complete data set from user

study 1 to build the machine learning models for the realist

data from user study 2. For study 2, we analyzed all the

possible groupings of machine learning models to determine

the best axis and peak/valley that will produce the best overall

results for classifying the swimming strokes. Because we

evaluated each axis (X, Y, Z) and the peaks/valleys segments

for each axis, we produced six machine learning models.

IV. MODEL DESIGN

A. Six-Second Time Window

The time window is essential to the overall performance

of the machine learning algorithms. Previous papers have

presented that if the time window is too small or large, it can

affect the accuracy of the classifier [6]. Using a time window

is a suitable method and should not be removed when it comes

to activity recognition. The reason is that the data need to be

segmented to build a real-time classifier. For our system, the

perfect window is not essential, and it does not have to be

exact and must fit the activities being recognized. However,

Fig. 4 Algorithm process for smoothing the data

it does have to be large enough to contain the entire activity.

We choose a six-second time window because on average a

person performs a full swimming motion every three seconds

and we wanted the window to be large enough to encompass

multiple swimming motions within the segmented data.

B. Resampling and Smoothing

During prepossessing the data, it is not uncommon to

smooth it before using it for activity recognition. The goal

of smoothing data is to help reduce the effects of noise

on the activity recognition model. We present a method for

smoothing the data, which can be used for any time window

length. Our algorithm uses Matlab2020B and its (downsample,

smoothdata, and detrend) functions. An illustration of the

algorithmic steps is presented in Fig. 4.

Our system begins with the raw data matching the frequency

of the sensor collection tool. From there, we down-sample the

data based on a frequency percentage; for example (20% of

100Hz is 5 points per second). We then smooth the data over

that 1-second window to reduce the noise further. The smooth

function we use is a Gaussian filter instead of a normal rolling

mean filter. Finally, the data are sent to a detrend function,

which removes the polynomial trend of the overall data so we

can get the peak and valley data sets. We developed a dynamic

smoothing algorithm to produce fine or coarse data from the

time window.

C. Axis Peak/Valley Detection

When it comes to peak and valley segmentation, we build

upon an already working algorithm. Sezgin et al. used a

peak valley detection method for sketch recognition which

calculates the peaks/valleys based on the points passing the

median [20]. Our system builds on this and keeps all starting
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Fig. 5 Visual representation of peak/valley angles

points that passes the median as it finds the peak and gets the

final point as it again crosses the median. The aforementioned

Fig. 3 visualizes how each axis collects peaks and valleys

segments.

D. Axis Feature Extraction

TABLE I
FEATURES FROM SKETCH RECOGNITION RESEARCH

# Feature Name
(A) Total Duration
(B) Max Speed
(C) Max Speed Squared
(D) Min Speed
(E) Min Speed Squared
(F) Average Speed
(G) Average Speed Squared
(H) Total Intersection
(I) End Intersection
(J) Difference Intersection
(K) Total Length
(L) Bounding Box
(M) Height Bounding Box
(N) Depth Bounding Box
(O) Volume Bounding Box
(P) Diagonal Bounding Box
(Q) Distance First to Last
(R) Distance Total Length/Bouding Box Diagonal
(S) Convex Hull
(T) Sum Total Angle 3D Points
(U) Sum Abs Total Angle 3D Points
(V) Sum Squared Total Angle 3D Points
(W) Speed Local Maxima
(X) Speed Local Minimum
(Y) Cosine Angel Between Points 1 and 3
(Z) Sin Angel Between Points 1 and 3

(AA) Cosine Angel Between Points First and Last
(BB) Sin Angel Between Points First and Last

We use 55 features collected from sketch recognition

TABLE II
ACTIVITY RECOGNITION AND SIGNAL PROCESSING FEATURES

# Feature Name
(A) Entropy
(B) Change In Direction
(C) Spectral Kurtosis
(D) Max Change in Mean
(E) Min Change in Mean
(F) Spectral Mean
(G) Root Mean Square
(H) Root Sum of Squares
(I) Power bandwidth
(J) Mean
(K) Standard Deviation
(L) Kurtosis
(M) Change in Entropy
(N) Direction Change Ratio
(O) Peak/Valley Angle A
(P) Peak/Valley Angle B
(Q) Peak/Valley Angle C
(R) Variance
(S) Correlation Coefficient
(T) Covariance

research [21], [20], [22] as presented in Table I. We include

an additional set of features from the activity recognition and

signal processing domains, which are given in Table II. Most

features in Table II are from the signal processing module

that can be installed so that functions can be accessible in

Matlab2020B software.

We include a feature that is angle based, utilizing the angles

at the peak/valley to the start and endpoints as represented

in Fig. 5. The resulting triangle illustrate how our algorithm

selects the point on the starting or ending side of crossing the

median, not an interpolated point on the media. Each angle is

its own feature, and all features are generated individually for

each axis (X, Y, Z) of the sensor, producing 285 features.

The least amount of features need to be extracted to

build an optimal performing machine learning algorithm.

We use a filtering method to remove all the features that

are redundant. We use the Minimum Redundancy Maximum

Relevancy (MRMR) algorithm. The MRMR function built with

Matlab2020B provides a ranked value for each feature. We use

a threshold of 0.001 and keep all the features that provide a

relevance value above the threshold.

E. Machine Learning Model Development

We used the Matlab2020B fitcauto function to determine

the optimal machine learning algorithm, which automatically

selects the best models to train based on the feature data

provided. For all six datasets, fitcauto selected ensemble,

nearest neighbor (KNN), naive bayes (NB), support vector

machine (SVM), regression tree, and decision tree. It created

150 variations of each using different sets of parameters,

selecting the model with the lowest validation loss and highest

accuracy.

We used leave-one-subject-out validation for evaluating the

machine learning algorithm from the user study 1 datasets.

Leave-one-subject-out validation is when we evaluate each

machine learning model by using the entire dataset from a

single participant as test data while the other participants are
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TABLE III
TABLE OF SELECTED FEATURES FOR EACH AXIS

Axis Peak/Valley Feature Selected Count
X Peak 7

Valley 7
Y Peak 7

Valley 154
Z Peak 9

Valley 262

training data. The fitcauto function is used to build each model

for the leave-one-subject-out validation. For each participant,

we used fitcauto for each of the six grouped datasets (X-axis

Peak, X-axis Valley, Y-axis Peak, Y-axis Valley, Z-axis Peak,

Z-axis Valley). The entire dataset was used to produce the

machine learning models to validate the performance of user

study 2 datasets.

F. Segmentation Classification

For this paper, we present the results from the optimal

selected models. As in previous literature, we use the

majority-selected classifier from across the six machine

learning models. Thus, from all the peak/valley segments for

each axis within the time window, the most frequent label that

was classified will be the final label. Fig. 6 is a representation

of how the majority selection is performed in a time window.

V. RESULTS

A. Features Selected

The feature selection process used the entire dataset from

user study 1. MRMR was used to rank all 385 features and

provide a relevance Score. The MRMR function produces a

predictor Score, which signifies the feature’s importance to

classification. We use a threshold of 0.001, and if any Score

is above that value, it will be a kept feature. Table III shows

the number of features selected for each axis and peak/valley.

Among them, the valleys for both the Z and Y axis had a large

number of features that were above 0.001.

B. Controlled Study Analysis

The overall goal of analyzing the controlled study was to

determine if the peak/valley recognition algorithm produced

an optimal performance. The way we did this is using the

leave-one-out validation. Leave-one-out validation is where we

use each participant individually as the test set, and all other

participants are the training data. We collected 15 participants

producing 15 separate F-Scores for each participant. We

averaged all the F-Scores to get the final result for each axis

and peak/valley group.

Using leave-one-out validation produced a high F-Score

for each axis. For X, Y, and Z peak: 0.98, 0.98, and 0.86,

respectively. For X, Y, and Z valley: 0.98, 1.00, and 1.00,

respectively. We note the majority of results produced an

F-Score of above 0.95, with only the exception of the Z-axis

peak.

TABLE IV
SELECTED GROUPINGS OF AXIS AND PEAKS/VALLEYS MODELS

Grouped Data Selected Datasets F-Score
1 Valley Z Axis 0.95

2
Peak Z Axis

Valley Z Axis
0.93

3
Peak Z Axis

Valley Z Axis
Valley Y Axis

0.96

4

Peak Z Axis
Valley Z Axis
Valley Y Axis
Peak Y Axis

0.95

5

Peak Z Axis
Valley Z Axis
Valley Y Axis
Peak Y Axis

Valley X Axis

0.93

6

Peak Z Axis
Valley Z Axis
Valley Y Axis
Peak Y Axis

Valley X Axis
Peak X Axis

0.92

Fig. 6 Majority selection classification process of a real-time window
(x-Axis (Blue), Y-Axis (Cyan), Z-Axis (Magenta)); for the peaks and

valleys, the Correct Classification (Green) and Miss Classification (Red) are
presented

C. Freeform Study Analysis

The controlled study results produced high F-Scores for all

groupings of datasets. We wanted to determine which groups

should be used and considered for a freeform study. The way

we did this was to incorporate the majority classifier for the

time window. We then examined all possible combinations

of groups from a single group to using all six groups. We

reviewed 63 total possible combinations.

We found that the groups built upon themselves and only

incorporated another axis and peak/valley. The Z axis produces

the best results for our dataset and grows to Y and X at the

end, as presented in Table IV. The final best result is to use
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Fig. 7 Freeform study confusion matrix results using Z-Axis Peaks, Z-Axis
Valleys, Y-Axis Valleys

TABLE V
COMPARISON OF TIME WINDOW f-score CLASSIFIERS TO THE

SEGMENTED CLASSIFIER DEVELOPED FOR SWIMMING ACTIVITIES:

Ba Br Bu Fr
Garmin [7] .98 .86 .94 .98
Wang et al. [23] 1.0 .92 .92 1.0
Time Window Only 1.0 1.0 .85 1.0
Peak/Valley Segmented Time Window 1.0 1.0 1.0 1.0

Br-breaststroke, Ba-backstroke, Bu-butterfly, Fr-freestyle

the Z-axis Peak/Valley and the Y-Axis Valley, which produced

a 0.96 F-Score. The confusion matrix in Fig. 7 shows that the

only issue presented is butterfly and breaststroke.

We compared our peak/valley segmentation method among

other activity recognition paper results. We discovered that the

butterfly is the most difficult activity to recognize based on

Table V. Our system combats the issue and is able to classify

beginner swimmers at near-perfect accuracy.

VI. DISCUSSION AND FUTURE WORK

When reviewing the sensor data’s X, Y, and Z Axes, we

discovered that the Z and Y axes were selected for providing

the highest F-Score. The Z and Y axes had the most factors for

breaststroke, butterfly, sidestroke, and treading water. Among

the Z and Y axes, the valley classifiers produced the highest

F-Score among all groupings. For some of the swimming

strokes like breaststroke and butterfly, the peaks are points

in which the person breaches the water while valleys are

while they stay underwater. The swimmer has the most control

when it comes to interactions underwater, while breaching

relies on having to counter gravity as well as the waves [24].

Our results reinforce that for algorithms that use sensors

to examine the swimmer’s performance the motions that

result in valleys within the datasets should be weighted more

on the overall machine learning algorithm when classifying

swimming activities.

Beginner swimmers lack coordination and proper

form while they swim compared to more professional

swimmers [25], which is a good reason why the butterfly

is the hardest swimming stroke because it requires a lot of

energy and coordination to perform [26]. Classifiers have

issues with classifying butterflies because the swimmers often

perform it wrong, causing the motion to look identical to

breaststroke. Our system focuses on that issue and classifies

based on all the strokes performed within the window. This

will mitigate the algorithm’s classification performance issues

due to errors in swimmer’s technique.

We plan to expand on the work and move from

just the classification of repetitive activities to classifying

single-motion activities. Another goal is to incorporate

proficiency and error detection for each swimming stroke

to help coaches and swimmers produce optimal physical

coordination.

VII. CONCLUSION

The purpose of this paper was to use a two-form

segmentation system that will remove the need for producing

an optimal time window for swimming recognition. We did

this by segmenting a time window dataset based on the groups

of data that pass the median threshold. Results show that the

segmentation method works and gives high F-Scores for all

axes (X, Y, Z). We plan to move forward with developing a

combination of the single and repetitive action classification

system for swimming activity.
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