
 

 

  
Abstract—Pattern discovery from time series is of fundamental 

importance. Particularly, when information about the structure of a 
pattern is not complete, an algorithm to discover specific patterns or 
shapes automatically from the time series data is necessary. The 
dynamic time warping is a technique that allows local flexibility in 
aligning time series. Because of this, it is widely used in many fields 
such as science, medicine, industry, finance and others. However, a 
major problem of the dynamic time warping is that it is not able to 
work with structural changes of a pattern. This problem arises when 
the structure is influenced by noise, which is a common thing in 
practice for almost every application. This paper addresses this 
problem by means of developing a novel technique called adaptive 
dynamic time warping. 

 
Keywords—Pattern recognition, optimal control, quadratic 

programming, dynamic programming, dynamic time warping, 
sintering control.  

I. INTRODUCTION 
N recent years, there has been an increasing interest in 
developing different algorithms for time series pattern 

recognition. Most of them are based on dynamic time warping 
(DTW) [1]. However, a major problem of DTW is inability to 
work with structural changes of a pattern being searched. 
Many studies in DTW have been carried out [2]-[13]. 
However, far too little attention has been paid to the problem 
of variable structure pattern recognition. 

The problem of pattern structure variation arises when the 
structure is influenced by noise, which is a common thing in 
practice for almost every application. The standard DTW 
approach uses only information about fixed pattern points and 
not structural elements between these points. Throughout this 
paper, the term ‘structural element’ will refer to linear or 
nonlinear part, which connects two adjacent fixed points in a 
pattern and the term ‘fixed point’ will refer to a point of a 
pattern (see Fig. 1 for better understanding). 

 

 
Fig. 1 On the left illustration for the term ‘fixed point’; On the right 

illustration for the term ‘structural element’ (dotted lines) 
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In practice, structural elements form possible trajectories of 
variation of pattern structure. The DTW algorithm cannot use 
these elements because there are an infinite number of 
possible solutions to the initial problem of pattern matching, 
so that dynamic programming approach cannot be used 
(because one can select infinitely many points on every 
structural element, which forms a pattern).  

This paper will focus on the problem of variable structure 
pattern recognition in time series data by means of developing 
a novel algorithm, which will be called adaptive dynamic time 
warping (ADTW). 

The paper has been divided into three parts. The first part 
describes ADTW as an optimal control problem. The second 
section of this paper solves a quadratic programming problem, 
which is used to align points to structural elements of a 
pattern. Finally, in the third section, some conclusions will be 
drawn. 

II. ADAPTIVE DYNAMIC TIME WARPING AS AN OPTIMAL 
CONTROL PROBLEM 

Review The problem of pattern matching can be formulated 
in terms of an optimal control problem. More accurately, from 
a set of possible control actions U  find such an action *U , 
which will change a state of a system S  from its initial state 

0ξ , that belongs to some set 0S , to some final state G GSξ ∈  

at the same time minimizing a criterion 0( , )W Uξ . 
A change of state of a system can be accomplished by 

means of control actions 1 2, ,..., Gu u u : 
 

1 2( , ,..., )GU u u u=          (1) 
 
where: ju  – a control action at step k , which changes a state 

of a system from 1kξ −  to kξ .  A criterion W , which should be 
minimized, can be calculated as follows: 
 

1
1

( , )
G

i i i
i

W Z uξ −
=

= ∑        (2) 

 
where: 1( , )i i iZ uξ −  – a loss, which depends on the previous 

state 1iξ −  of a system and a selected control action iu , at step 
i .  

Thus one has to select a control action ku  in such a way 
that it will minimize a criterion W .  This statement can be 
written analytically: 

Adaptive Dynamic Time Warping for Variable 
Structure Pattern Recognition  

S. V. Yendiyarov 

I

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Industrial Engineering

 Vol:7, No:10, 2013 

1352International Scholarly and Scientific Research & Innovation 7(10) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 I

nd
us

tr
ia

l E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
10

, 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
72

07
.p

df



 

 

( ) ( ){ }* *
1 1 1min ( , )

k
k k k k k k ku

W Z u Wξ ξ ξ− − += +        (3) 

 
This equation is due to dynamic programming, which was 

originally used by Richard Bellman to describe the process of 
solving problems where one needs to find the best decisions 
one after another. Equation (1) assumes that a state  1kξ −  has 
been chosen already.  

In this notation, a solution to the problem can be considered 
as minimization of the previous equation: 

 

( ) ( )*
0 0min ,k U

W W Uξ ξ=        (4) 

 
A solution of the given problem is a sequence of some 

optimal control actions *U : 
 

* (*) (*) (*)
1 2( , ,..., )GU u u u=        (5) 

 
Taking into account that these control actions *U  should 

belong to a given set of possible control actions Θ : 
 

{ } (*)
1 2, ,..., ,G j juΘ = Θ Θ Θ ∀ ∈ Θ      (6) 

 
Elements of Θ  are determined by linear functions ( )jw X  

with restricted domains, which are set by intervals 
i jX X X≤ ≤ : 
 

{ }( )j

i

X
j X jw XΘ ∈ Ω ⊆        (7) 

 
where: j

i

X
XΩ  – it denotes a set of values, which is determined 

by linear functions ( )jw X  with restricted domains 

i jX X X≤ ≤ . 
Except the existing constraints, which are placed on the 

possible control actions, constraints on possible transitions are 
also placed. These constraints allow to avoid impossible 
transitions between different states. 

For this reason, let assume that elements of a state jξ  can 
be classified in several classes , , ,...,A B C W : 

 
( ) { }, , , ,...,z
k j z A B C Wξ∋ ∈ ∈      (8) 

 
where: ( )z

k∋  – k ’th element, which belongs to some class z , 

of a state jξ . 
Constraints on the possible transitions can be written in the 

following way: 
 

( ) ( )z r
k j q iξ ξ∀ ∋ ∈ →∋ ∈        (9) 

This means that for all elements ( )z
k∋  (of some state jξ ), 

which belong to some class z , it is possible to move to an 
element ( )r

q∋  (of some state iξ ), which belongs to some class 
r . 

This formal approach can now be easily adopted in order to 
solve the task of time series data pattern matching. 
Recognition of a pattern should be realized by means of multi-
scale approximation of a pattern. This task can be considered 
as fitting a piece-wise linear function to time series data at 
different scales.   

  As stated before, the possible control actions, at a given 
interval, should belong to some set, which is restricted by 
some linear function ( )jw z . Thus, the set has an infinite 
number of elements. Therefore, at the initial stage, the 
principle called ‘expected losses’ will be used. In order to do 
so, the linear functions ( )jw z  are replaced by their mean 

values jw  at the given interval: 
 

1 ( )
j

i

z

j j
j i z

w w z dz
z z

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

∫        (10) 

 
This transformation of the initial pattern is illustrated in Fig. 

2. 
 

 

Fig. 2 Replacing linear functions ( )jw z (on the left) by their means 

jw  (on the right) 

 
After this transformation of the initial pattern, we can form 

a set of classes, which then can be used to classify elements 
( )q
k∋  of some state jξ : 

 
( ) { }1 2 1 2, , ,... , , ,...,q
k j m zq U U U F F Fξ∋ ∈ ∈   (11) 

 

where: jU  – a class, which relates an element ( )jU
k∋  to some 

interval j , which is characterized by jw , jF  – a class, which 

relates an element ( )jF
k∋  to some fixed point j  of a pattern. 

Hence, in order to solve the task of pattern recognition it is 
enough to use only two classes ,F U . 

A set of possible control actions for the task of pattern 
recognition, at some step k , can be written as follows: 
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( ) ( ) ( ) ( ){ }( ) ( )( ) ( )
1 1,..., ,..., ,...,
U FU F

m z

k k k k ku u u u u
∋ ∋∋ ∋

=     (12) 

 

where: ( )( )U
j

ku ∋  – it denotes a transition from some element of a 

state 1kξ −  to some j ’th element of a state kξ , which belongs 
to a class U .  

A function 1( , )i i iZ uξ − , which is used to calculate optimal 
approximation of a pattern to some time series data can be 
obtained from the expression: 

 

( ) ( )( ) ( )
( )

1 ( ) ( )
1, ,

q
rk k k

k k k j j k jZ u E P u Rξ ∋−
− = Δ + ∋ + ∋     (13) 

 
where: 1k

jE −Δ  – expected losses, which we will incur when we 

select some element ( )k
j∋  of a state 1kξ − , ( )( )( )

( ) ,
q

rz
j kP u ∋

∋  – a 

penalty function, which places constraints on possible 
transitions between states. More precisely, it places constraints 
on possible transitions from state 1kξ −  to kξ . Meanwhile ( )z

j∋  

is an element of a state 1kξ −  and ( )( )q
r

ku ∋  is a control action, 

which determines an element ( )q
r kξ∋ ∈ . ( )( )k

jR ∋  – a weighting 

function, which determines a gain or a prize for transitioning 
from a state ( )

1
k
j kξ −∋ ∈ . 

Expected losses, which we will incur when we select some 
element ( )k

j∋  of a state 1kξ −  form a matrix of expected losses 
EΔ : 

 

1 2 1 2

1 1 1 1 1 1
1 1 2 1 2

2 2 2 2 2 2
2 1 2 1 2

1 2 1 2

... ...

... ...

... ...
... .....................................................

... ...

m z

m z

m z

G G G G G G
G m z

U U U F F F

E E E E E E

E E E E E E E

E E E E E E

ξ

ξ

ξ

⎡ ⎤
⎢ ⎥

Δ Δ Δ Δ Δ Δ⎢ ⎥
⎢ ⎥Δ = Δ Δ Δ Δ Δ Δ⎢ ⎥
⎢ ⎥
⎢ ⎥

Δ Δ Δ Δ Δ Δ⎢ ⎥⎣ ⎦

      (14) 

 
The elements j

iEΔ  of the matrix EΔ  can be calculated by 
means of the following expression: 

 

1 2 1 2, { , ,... , , ,..., }j
i j i m zE U U U F F Fξ λ λΔ = − ∈     (15) 

 
where: jU  – a value of jw , jF  – a value of a fixed point of a 

pattern, jξ  – a j ’th value of time series data to be 
approximated by our initial pattern. 

The weighting function ( )( )k
jR ∋ , which determines a prize 

for transitioning from a state ( )
1

k
j kξ −∋ ∈ : 

 

( )( ) ,
, 0

MAX
k i
j

i

k F R G e
R

k U R
⎧ ∈ = − ⋅ Δ⎪∋ = ⎨

∈ =⎪⎩
      (16) 

 
where G  – the length of time series data, MAXeΔ  – the 
maximum expected loss j

iEΔ .  
The weighting function guarantees that all fixed points 

1 2, ,..., zF F F  of a pattern will be included in a solution of the 
problem. Thus, it preserves the inherent structure of a pattern. 

The penalty function ( )( )( )
( ) ,

q
rz

j kP u ∋
∋  is used to place 

constraints on possible transitions between states and can be 
written as follows: 

 

( )( )
( )
( )
( )
( )

( )
( )

, 0

,
,

1 , 0

1 ,

q
r

l

lz
j k

l

l

z U j r P

z U j r P
P u

z F j r P

z F j r P

∋

∈ ∪ = =⎧
⎪

∈ ∪ ≠ = +∞⎪∋ = ⎨
∈ ∪ = − =⎪

⎪ ∈ ∪ ≠ − = +∞⎩

    (17) 

 
In Fig. 3 a decision tree is shown, in order to clarify the 

meaning of ( )( )( )
( ) ,

q
rz

j kP u ∋
∋ . 

 
( ) ,z
j k iz Uξ∋ ∈ ∈

( ) ,z
j k iz Fξ∋ ∈ ∈

( )
1, { , }q

r k i iq U Fξ +∋ ∈ ∈ ( )
1, { , }q

r k i iq U Fξ +∋ ∈ ∈

( ) ( )
1, ,z q

j k r k j rξ ξ +∋ ∈ ∋ ∈ = ( ) ( )
1, , 1z q

j k r k j rξ ξ +∋ ∈ ∋ ∈ = −

 

Fig. 3 Decision tree, which shows a behavior of the penalty function 
( )( )( )

( ) ,
q

rz
j kP u ∋

∋  

 

The penalty function 
( )( )( )

( ) ,
q

rz
j kP u ∋

∋
 allows to exclude some 

possible approximations, which do not obey certain 
predefined behavior. 

III. ALIGNING DATA POINTS TO STRUCTURAL ELEMENTS OF A 
PATTERN 

In the previous section, we described a novel algorithm 
ADTW, which can be used to find patterns with varying 
structure in time series data. Despite the fact that ADTW can 
work with patterns with varying structure, we aware that 
ADTW has one limitation, which we will resolve in the 
present section. If we get back to (10) we will see that our 
linear functions ( )jw z  were replaced by their mean values. It 
actually means that we cannot precisely align our pattern and 
time series data. This problem is addressed in this section. 
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First of all, our pattern should be approximated by linear 
functions (i.e. each structural element of a pattern should be 
represented by a linear function). This representation is useful, 
especially in our case: 

 

( )

( )

( )

( )

1 1

1

[1, 2),
...

[ , 1),

...

[ 1, ],

j j

n n

x x x

x x j j x x

x n n x x

ω ε

ω ε

ω ε

+

⎧ ∈ Ω = +
⎪
⎪
⎪⎪Ω = ∈ + Ω = +⎨
⎪
⎪
⎪ ∈ − Ω = +⎪⎩

         (18) 

 

where ( ) 1j jx xω ε +Ω = +  represents our linear functions 

( )jw z , which place constraints on the possible pattern 
structure. 

In the case, when some interval 1 2( , )x η η∈  contains only 
one point the alignment can be readily obtained. The optimal 
value of *

optx  should be selected taking into account the 
following constraint: 

 

1 2jxη η< <          (19) 
 

In this case, the following equation should be solved: 
 

*

*

( ) 0DATA
j j

DATA
j

j

Y Ax B

Y B
x

A

− + =

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠

      (20) 

 
where: ,A B – coefficients of a linear model on the interval 

1 2( , )η η , *
jx  – the optimal value for the present interval. 

The optimal value *
jx  can be calculated as follows: 

 
* *

1 2

* *
1 1

*
2 2

( , ),

,

,

j j

j j

j

x x

x x

x

η η

η η ξ

η η ξ

⎧ ∈
⎪⎪= < +⎨
⎪

> −⎪⎩

       (21) 

 
where: ξ  is some small quantity (i.e. 0.0001ξ = ). 

In the case, when some interval 1 2( , )x η η∈  contains more 
than one point i.e.: 

 

1 1 2{ ,..., }, ( , )n jX x x x η η= ∈      (22) 
 

In this case, (21) cannot be used to align a pattern and time 
series data. To solve this problem we propose the following 
quadratic programming problem: 

 

( ) 1 min
2 j

T T

x
F X X Xβ = + →          (23) 

Taking into account constraints: 
 

1 2j

X b
xη ξ η ξ

≤
+ < < −

 

 
Our problem should be transformed in order to place it in 

the form of (23). It can be stated as follows: 
 

( ) ( )( )2

1

min
j

d

j j xj

F Ax B yβ
=

= + − →∑    (24) 

 
We opened the brackets in (24) and discarded constants: 
 

( ) ( )( )

( )

( )( ) ( )

2

1

2 2 2 2

1

2 2 2

1 1

2 2 2

2 2

d

j j
j

d

j j j j j j
j

d d

j j j j j j
j j

F Ax B y

A x ABx Ax y By y B

A x x AB Ay Cx D x

β
=

=

= =

= + − =

= + − − + + =

= + − = +

∑

∑

∑ ∑

   (25) 

 
where: C  – a constant, which equals 2A , jD  – a value, 

which depends on jy  and it can be calculated as 2 2 jAB Ay− .  
Now we can obtain matrices , , : 
 

1 1 2 1

2 0 ... 0
0 ... 0 0

,
... 0 2 ...
0 0 ... 2

1 1 0 ...
0 1 1 ...
... ... ... ...
0 ... 1 1
0 0 ... 0

[ , ,..., ], [ , ,...,0]

d x d

d x d

T T
x d d x d

C

C
C

D D D b ξ ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

= = − −

   (26) 

 
A solution to this problem will be a vector of the optimal 

values of TX  on the interval 1 2( , )η η .  
The proposed model allows precisely aligning our pattern 

and time series data.  

IV. CONCLUSION 
In this paper the development of a novel algorithm, which 

is called adaptive dynamic time warping, was developed in 
order to increase recognition abilities of the standard DTW 
algorithm. 

For this reason, we have introduced two important terms: 
‘fixed point’ and ‘structural element’. The standard DTW 
algorithm allows only to use fixed points of a pattern, which 
seriously restricts its recognition abilities.  
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The proposed approach first approximates structural 
elements of a pattern by constants and then uses dynamic 
programming optimization procedure. After that the quadratic 
programming problem was formulated and solved in order to 
accurately align time series data points to the structural 
elements of a pattern. 

The process of pattern matching was described in terms of 
an optimal control of some system, which should be moved 
from some initial state 1kξ −  to some final state kξ , while 
minimizing some criterion W . In our case, the system 
represents a pattern being searched. Meanwhile control 
actions represent possible changes of the pattern structure.  

In order to control matching procedure two functions were 
introduced: the penalty function and the weighting function. 
The first one is used to place constraints on possible 
transitions between states. The weighting function guarantees 
that all fixed points of a pattern will be included in a solution 
of the problem. Thus, it preserves the inherent structure of a 
pattern. 

The proposed approach permits different penalty as well as 
weighting functions to be developed. This fact makes our 
approach very flexible.  

This article is a direct continuation of the article [14], 
because we used proposed technique in our expert system to 
recognize temperature profiles of suction boxes, in order to 
control speed of the sintering car. 
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