
Multiple Gaussian Process Models

Abstract—This paper presents a Gaussian process model-based
short-term electric load forecasting. The Gaussian process model is
a nonparametric model and the output of the model has Gaussian
distribution with mean and variance. The multiple Gaussian process
models as every hour ahead predictors are used to forecast future
electric load demands up to 24 hours ahead in accordance with the
direct forecasting approach. The separable least-squares approach that
combines the linear least-squares method and genetic algorithm is
applied to train these Gaussian process models. Simulation results
are shown to demonstrate the effectiveness of the proposed electric
load forecasting.

process model, genetic algorithm, separable least-squares method.

I. INTRODUCTION

RECENTLY, power systems have been more complicated
and their uncertainties have been increasing due to the

deregulation and liberalization of the electricity market. It is
indispensable to forecast electric load demand accurately to
operate power systems with high reliability and economy.
Short-term electric load forecasting is very important for
starting and halting problem of generator, and economical load
distribution. So far, many methods for electric load forecasting
have been developed using multi-layered neural network
models [1]–[3], fuzzy model [4], Kalman filter [5], H∞ filter
[6], and so forth. However, since these methods are categorized
into the parametric forecasting, one needs many weighting
parameters to describe the nonlinearity, which makes the
training of the prediction model and the determination of
the model structure complicated. Moreover, any confidence
measures for predicted load demands are not given in such
forecasting methods.

To overcome these problem, in this paper, we propose
a direct method for short-term electric load forecasting in
the Gaussian process (GP) framework. This electric load
forecasting is carried out by the GP-based time series
forecasting [7]. The GP model was originally utilized for
the regression problem by O’Hagan [8], and has recently
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received much attention for use in regression and classification
problems [9]–[11]. Moreover, this model has been introduced
for the modeling of nonlinear dynamic systems [12]–[14] and
the time series forecasting [7], [15], [16]. Some applications
such as human motion modeling [17] and predictive control
in gas-liquid separation plants [18] have also been reported by
using the GP model. Since the GP model has fewer parameters
than parametric models such as the neural network model
and fuzzy model, we can describe the nonlinearity between
the past electric load and the future electric load by using
a few parameters. The uncertainties of the predicted electric
load demands are usually not obtained by the non-GP-based
method such as the neural network model-based method. The
proposed forecasting method gives the predicted electric load
demands and the uncertainties of the predicted values as well.
This information about uncertainties of the predicted electric
load demands must be very useful for reliable management
of electric power system. Moreover, in the proposed method,
the forecasting is directly performed by using the multiple
trained GP models as every hour ahead predictors. As the
proposed direct method uses not only one-hour ahead predictor
but also all-hours ahead predictors, the prediction errors are
not accumulated as the forecasting horizon increases.

To perform electric load forecasting in the GP framework,
the GP prior models have to be trained by minimizing
the negative log marginal likelihood of the training data.
Unfortunately the cost function generally has multiple local
minima, therefore, one has to handle a nonlinear optimization
method which is very complicated. The gradient based
optimization algorithm still suffers from the local minima
problem unless the initial guess is suitable. We adopt the
genetic algorithm (GA) [19] to train the GP models in this
paper. The hyperparameters of covariance functions are coded
into binary bit strings in the GA, and the weighting parameters
of the prior mean function corresponding to each candidate
hyperparameter, are estimated by the linear least-squares (LS)
method. This training is based on the separable LS approach
[20] which has been utilized for linear and nonlinear system
identification [21], [22].

This paper is organized as follows. In section II, the problem
of short-term electric load forecasting is formulated. In section
III, the multiple GP prior models are derived for every hour
ahead predictors. In section IV, the training method of the GP
prior models based on the separable LS approach is proposed
including the use of the GA. In section V, short-term electric
load forecasting by the GP posterior distribution is presented.
In section VI, simulation results are shown to illustrate the
effectiveness of the proposed forecasting method. Finally,
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some conclusions are given in section VII.

II. STATEMENT OF THE PROBLEM

Assume that a j-hours ahead electric load predictor is
described as

y(k + j) = fj(x(k)) + εj(k) (j = 1, 2, · · · , 24)
x(k) = [y(k), y(k − 1), · · · , y(k − 23)]T

(1)

where k denotes the time, y(k) is the electric load, and y(k+j)
is the electric load at the j-hours ahead from the time k. fj(·)
is a function which is assumed to be stationary and smooth.
εj(k) is zero mean Gaussian noise with variance σ2

j .
The problem of this paper is to construct the following

probability distributions for the multiple ahead prediction

y(k + j)|x(k) ∼ N (ŷ(k + j), σ̂2(k + j))
(j = 1, 2, · · · , 24) (2)

and to carry out electric load forecasting up to 24 hours ahead
based on these distributions, by using the GP framework.

III. GP PRIOR MODEL

Putting k = ks, ks + 1, · · · , ks +N − 1 on (1) yields

wj = fj + εj (3)

where
wj = [y(ks + j), y(ks + j + 1),

· · · , y(ks + j +N − 1)]T

fj = [fj(x1), fj(x2), · · · , fj(xN )]T

εj = [εj(ks), εj(ks + 1),
· · · , εj(ks +N − 1)]T

X = [x1,x2, · · · ,xN ]T

= [x(ks),x(ks + 1), · · · ,x(ks +N − 1)]T

=

⎡
⎢⎢⎢⎣

y(ks) y(ks + 1)
y(ks − 1) y(ks)

...
...

y(ks − 23) y(ks − 22)

· · · y(ks +N − 1)
· · · y(ks +N − 2)

· · · ...
· · · y(ks +N − 24)

⎤
⎥⎥⎥⎦
T

(4)

wj and fj are the model output vector and the function value
vector for the j-hours ahead predictor, respectively. X is the
model input matrix and is common for every hour ahead
predictors. {X,wj} is the training input and output data for
the j-hours ahead predictor.

A GP is a Gaussian random function and is completely
described by its mean function and covariance function. We
can regard it as a collection of random variables which
has joint multivariable Gaussian distribution. Therefore, the
function value vector fj can be represented by the GP as

fj ∼ N (mj(X),Sj(X,X)) (5)

where mj(X) is the N -dimensional mean function vector and
Sj(X,X) is the N -dimensional covariance matrix evaluated
at all pairs of the training data. Equation (5) means that fj

has a Gaussian distribution with mean vector mj(X) and
covariance matrix Sj(X,X).

The mean function is often represented by a polynomial
regression [11]. In this paper, the mean function vector
mj(X) is expressed by the first order polynomial, i.e. a linear
combination of the input:

mj(X) = [mj(x1),mj(x2), · · · ,mj(xN )]T

= X̃θj
(6)

where X̃ = [X, e], e = [1, 1, · · · , 1]T is the N -dimensional
vector of ones, and θj = [θj0, θj1, · · · , θjL]T is the unknown
weighting parameter vector of the mean function to be trained.
The estimation of θj will be discussed in section IV. It might
be natural to use the first order polynomial of the input variable
as the mean function in the case that no prior information
about the mean function of the process generating time series
data is available. This setting does not limit the electric load
forecasting because the posterior mean function is modified to
appropriate nonlinear function according to electric load data
by the trained covariance function (see (20)).

The covariance matrix Sj(X,X) is constructed as

Sj(X,X) =

⎡
⎢⎢⎢⎣

Sj(1,1) Sj(1,2) · · · Sj(1,N)

Sj(2,1) Sj(2,2) · · · Sj(2,N)

...
...

...
Sj(N,1) Sj(N,2) · · · Sj(N,N)

⎤
⎥⎥⎥⎦ (7)

where the element Sj(p,q) = cov(fj(xp), fj(xq)) =
sj(xp,xq) is a function of xp and xq. Under the assumption
that the process is stationary and smooth, the following
Gaussian kernel is utilized for Sj(p,q):

Sj(p,q) = sj(xp,xq)

= ρ2j exp

(
−||xp − xq||2

2�2j

)
(8)

where ρ2j is the signal variance, �j is the length scale, and
|| · || denotes the Euclidean norm. The free parameters ρj
and �j of (8) and the noise standard deviation σj are called
hyperparameters and construct the hyperparameter vector
hj = [ρj , �j , σj ]

T. The role of the covariance function of
the GP is similar to that of the kernels of the support
vector machines. ρj can control the overall variance of
the random function fj(·) and determines the magnitude of
the function fj(·). �j can change the characteristic length
scale so that the axis about the model input changes. If
�j is set to be smaller, the function fj(·) becomes more
oscillatory. Therefore, the hyperparameter hj should be
appropriately determined according to the training data for
precise electric load forecasting. This parameter selection will
be also presented in section IV.

Since wj is noisy observation, we have the following GP
model for j-hours ahead prediction from (3) and (5) as

wj ∼ N (mj(X),Kj(X,X)) (9)
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Fig. 1 The proposed electric load forecasting scheme

where
Kj(X,X) = Sj(X,X) + σ2

j IN

IN : N ×N identity matrix
(10)

In the following, Sj(X,X) and Kj(X,X) are written as Sj

and Kj , respectively.

IV. TRAINING OF GP PRIOR MODEL

To perform electric load forecasting, the proposed direct
approach needs 1 to 24 hours ahead prediction models as
shown in Fig. 1. The accuracy of forecasting greatly depends
on the unknown parameter vector ϑj = [θT

j ,h
T
j ]

T and
therefore ϑj has to be optimized. This training is carried out by
minimizing the negative log marginal likelihood of the training
data:

J(ϑj) = − logP (wj |X,ϑj)

=
1

2
log |Kj |+ 1

2
(wj −mj(X))TK−1

j

×(wj −mj(X)) +
N

2
log(2π)

=
1

2
log |Kj |+ 1

2
(wj − X̃θj)

TK−1
j (wj − X̃θj)

+
N

2
log(2π)

(11)

Since the cost function J(ϑj) generally has multiple
local minima, this training problem becomes a nonlinear
optimization one. However, we can separate the linear
optimization part and the nonlinear optimization part for this
optimization problem. The partial derivative of (11) with
respect to the weighting parameter vector θj of the mean
function is as follows:

∂J(ϑj)

∂θj
= −X̃TK−1

j wj + X̃TK−1
j X̃θj (12)

j
ρ

j
l

:S ��������

bits
1
�L

��������

bits
2
�L

��������

bits
3
�L

j
σ

Fig. 2 Coding

Note that if the hyperparameter vector hj of the covariance
function is given, then the weighting parameter θj can be
estimated by the linear LS method putting ∂J(ϑj)/∂θj = 0:

θj = (X̃TK−1
j X̃)−1X̃TK−1

j wj (13)

However even if the weighting parameter vector θj is known,
the optimization with respect to hyperparameter vector hj is
a complicated nonlinear problem and might suffer from the
local minima problem.

Therefore, in this paper, we propose a method that combines
the linear LS method with GA based on the idea of the
separable LS approach [20]. Only the hyperparameter vector
hj of the covariance is coded into binary bit strings as shown
in Fig. 2 and searched by the GA which has a high potential
for global optimizations [19].

ρj is decoded logarithmically as follows:

ρj = 10r

r =
log10 ρmax − log10 ρmin

2L1 − 1
R+ log10 ρmin

(14)

where R is the decimal value of the binary representation of
the first block of the string S and [ρmin, ρmax] is the search
range of ρj . �j and σj are also decoded logarithmically in the
same manner.

The proposed training algorithm is as follows:
step 1: Initialization for training

Set j = 1 and let the training input data be X .
step 2: Preparation of training output data

Let the training output data be wj .
step 3: Initialization for GA

Generate an initial population of Q binary bit strings for
the hyperparameter vector hj randomly.
step 4: Decoding

Decode Q strings into real values hj[i] (i = 1, 2, · · · , Q) by
the decoding method as in (14).
step 5: Construction of covariance matrix

Construct Q candidates of the covariance matrix Kj[i] using
hj[i] (i = 1, 2, · · · , Q).
step 6: Estimation of θj

Estimate Q candidates of the weighting parameter vector
θj[i] of the mean function corresponding to hj[i] (i =
1, 2, · · · , Q) from (13).
step 7: Fitness value calculation

Calculate the negative log marginal likelihood of the training
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data:

J[i] = − logP (wj |X,ϑj[i])

=
1

2
log |Kj[i]|+ 1

2
(wj − X̃θj[i])

TK−1
j[i]

×(wj − X̃θj[i]) +
N

2
log(2π)

(i = 1, 2, · · · , Q)

(15)

and the fitness values F[i] = D − J[i] [19], where ϑj[i] =
[θT

j[i],h
T
j[i]]

T and D is a positive constant value.
step 8: Reproduction

Reproduce each of individual strings with the probability of
F[i]/

∑Q
ζ=1 F[ζ]. Practically, the linear fitness scaling [19] is

utilized to avoid undesirable premature convergence.
step 9: Crossover

Select two strings randomly and decide whether or not to
cross them over according to the crossover probability Pc.
Exchange strings at a crossing position if the crossover is
required. The crossing position is chosen randomly.
step 10: Mutation

Alter a bit (0 or 1) of string according to the mutation
probability Pm.
step 11: Repetition for GA

Repeat step 4 ∼ step 10 from generation to generation
so that the fitness value of the population increases. In
simulations, the genetic operations will be repeated until
prespecified G-th generation.
step 12: Determination of the GP prior model

Construct the suboptimal prior mean and prior covariance
for the j-hours ahead predictor by using ϑj[best] =
[θT

j[best],h
T
j[best]]

T = [θT
j[best], ρj[best], �j[best], σj[best]]

T with
the best fitness value over all the past generations:

mj(x) = [xT, 1]θj[best] (16)

⎧⎪⎪⎨
⎪⎪⎩

sj(xp,xq) = ρ2j[best] exp

(
−||xp − xq||2

2�2j[best]

)

kj(xp,xq) = sj(xp,xq) + σ2
j[best]δpq

(17)

where sj(xp,xq) is an element of the covariance matrix Sj ,
kj(xp,xq) is an element of the covariance matrix Kj , and
δpq is a Kronecker delta which is 1 if p = q and 0 otherwise.
step 13: Repetition for the GP prior model

If j < 24 then j = j + 1 and go to step 2.

V. ELECTRIC LOAD FORECASTING BY GP MODEL

In section IV, we have already obtained the GP prior
models for j (j = 1, 2, · · · , 24) hours ahead predictors. In the
proposed direct approach, short-term electric load forecasting
up to 24 hours ahead is carried out directly using every GP
prior models as shown in Fig. 1.

For a new given test input x∗ = x∗(k) = [y∗(k), y∗(k −
1), · · · , y∗(k − 23)]T and corresponding test output y∗(k +

j) (j = 1, 2, · · · , 24), we have the following the joint
Gaussian distribution:[

wj

y∗(k + j)

]

∼ N
([

mj(X)
mj(x∗)

]
,

[
Kj Sj(X,x∗)

Sj(x∗,X), sj(x∗,x∗) + σ2
j[best]

])
(j = 1, 2, · · · , 24)

(18)
where Sj(X,x∗) = ST

j (x∗,X) is the N -dimensional
covariance vector evaluated at all pairs of the training and test
data. sj(x∗,x∗) is the variance of the test data. Sj(X,x∗) and
sj(x∗,x∗) are calculated by the trained covariance function
(17).

From the formula for conditioning a joint Gaussian
distribution [23], the posterior distribution for a specific test
data is
y∗(k + j)|X,wj ,x∗ ∼ N (ŷ∗(k + j), σ̂2

∗(k + j))

(j = 1, 2, · · · , 24)
(19)

where
ŷ∗(k + j) = mj(x∗)

+Sj(x∗,X)K−1
j (wj −mj(X))

σ̂2
∗(k + j) = sj(x∗,x∗)

−Sj(x∗,X)K−1
j Sj(X,x∗) + σ2

j[best]

(20)

are the predictive mean and the predictive variance at the
j-hours ahead, respectively. It is noted that the nonlinearity
of the predictive mean can be expressed by the trained
hyperparameters even if the prior mean function is set to be a
linear combination of the input as (6).

VI. SIMULATIONS

Short-term electric load forecasting is performed for
the Kanto area in Japan using the proposed forecasting
method. The training data is downloaded from the TEPCO
ELECTRICITY FORECAST [24] released by Tokyo Electric
Power Company. The electric load demands in 2011 are
utilized for training data. The number of the training input
and output data is taken to be N = 200 for training each
j (j = 1, 2, · · · , 24) hours ahead predictor. Electric load
forecasting up to 24 hours ahead is carried out for each season.
The design parameters of the GA are given as follows:

population size: Q = 30
string length: L1 = L2 = L3 = 10
crossover probability: Pc = 0.8
mutation probability: Pm = 0.03
search range of ρj : [ρmin, ρmax] = [10−3, 102]
search range of �j : [�min, �max] = [10−3, 102]
search range of σj : [σmin, σmax] = [10−3, 102]
termination criteria G = 100-th generation

Figs. 3 – 6 show the results of electric load forecasting on
February, May, August, and November, in 2012, respectively.
They are typically chosen in each 3 months from 4 seasons.
Although the predicted electric demands on February have
small errors to the actual demands, the predicted electric
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Fig. 3 Electric load forecasting result (February, 2012)
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Fig. 4 Electric load forecasting result (May, 2012)

demands on May, August, and November are very close to the
actual demands. Moreover, the 95.5% confidence regions are
quite reasonable for all seasons. Note that these uncertainties
for the predicted electric demands are usually not obtained
by the non-GP-based method such as the neural network
model-based method. Since the proposed forecasting method
gives not only the predicted electric demands but also the
uncertainties, we can utilize the upper value of the confidence
region ŷmax(k+j) = ŷ∗(k+j)+2σ̂∗(k+j) as the maximum
value of the predicted electric demand. This information must
be useful for management of electric power.

VII. CONCLUSIONS

In this paper, a GP model-based short-term electric load
forecasting has been proposed. The short-term electric load
forecasting has been carried out directly by using multiple
GP model as every hour ahead predictors. The separable
LS approach combining the linear LS method with GA has
been proposed to train the GP prior model. Simulation results
show that the proposed forecasting method can give accurate
predicted electric load demand and the uncertainty of the
predicted values as well. Development of the forecasting
method that is taking the weather data and the type of date
into consideration is one of the future works.
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Fig. 5 Electric load forecasting result (August, 2012)
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Fig. 6 Electric load forecasting result (November, 2012)
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