Search results for: magnetic lines of force as magnets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1561

Search results for: magnetic lines of force as magnets

961 Optimization of a New Three-Phase High Voltage Power Supply for Industrial Microwaves Generators with N Magnetrons by Phase (Treated Case N=1)

Authors: M. Bassoui, M. Ferfra, M. Chraygane, M. Ould Ahmedou, N. Elghazal, A. Belhaiba

Abstract:

Currently, the High voltage power supply for microwave generators with one magnetron uses a single-phase transformer with magnetic shunt. To contribute in the development of technological innovation in industry of manufacturing of power supplies of magnetrons for microwaves, ovens for domestic or industrial use, this original work treats the optimization of a new three-phase high voltage power supply for industrial microwaves generators with N magnetrons by phase (Treated case N=1), from its modeling with Matlab-Simulink. The design of this power supply uses three π quadruple models equivalents of new three-phase transformer with magnetic shunt of each phase. Every one supplies at its output a voltage doubler cell composed of a capacitor and a diode that in its output supplies only one magnetron.  In this work we will define a strategy that aims to reduce the volume of the transformer and the weight and cost of the entire system of the high voltage power supply, while respecting the conditions recommended by the manufacturer, concerning the current flowing in each magnetron: (Imax <1.2 A, IAv ≈ 300 mA).

 

Keywords: Optimization, Three-phase transformer, Modeling, power supply, magnetrons, Matlab Simulink, High Voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
960 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov

Abstract:

At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
959 Quality Evaluation of Compressed MRI Medical Images for Telemedicine Applications

Authors: Seddeq E. Ghrare, Salahaddin M. Shreef

Abstract:

Medical image modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), X-ray are adapted to diagnose disease. These modalities provide flexible means of reviewing anatomical cross-sections and physiological state in different parts of the human body. The raw medical images have a huge file size and need large storage requirements. So it should be such a way to reduce the size of those image files to be valid for telemedicine applications. Thus the image compression is a key factor to reduce the bit rate for transmission or storage while maintaining an acceptable reproduction quality, but it is natural to rise the question of how much an image can be compressed and still preserve sufficient information for a given clinical application. Many techniques for achieving data compression have been introduced. In this study, three different MRI modalities which are Brain, Spine and Knee have been compressed and reconstructed using wavelet transform. Subjective and objective evaluation has been done to investigate the clinical information quality of the compressed images. For the objective evaluation, the results show that the PSNR which indicates the quality of the reconstructed image is ranging from (21.95 dB to 30.80 dB, 27.25 dB to 35.75 dB, and 26.93 dB to 34.93 dB) for Brain, Spine, and Knee respectively. For the subjective evaluation test, the results show that the compression ratio of 40:1 was acceptable for brain image, whereas for spine and knee images 50:1 was acceptable.

Keywords: Medical Image, Magnetic Resonance Imaging, Image Compression, Discrete Wavelet Transform, Telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2977
958 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: Triplet shears tests, retrofitting, seismic fabric, perforated brickwork, expanded glass granular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
957 Surface Roughness of Flange Contact to the 25A-size Metal Gasket by using FEM Simulation

Authors: Shigeyuki Haruyama , Didik Nurhadiyanto, Moch Agus Choiron, Ken Kaminishi

Abstract:

The previous study of new metal gasket that contact width and contact stress an important design parameter for optimizing metal gasket performance. The optimum design based on an elastic and plastic contact stress was founded. However, the influence of flange surface roughness had not been investigated thoroughly. The flange has many kinds of surface roughness. In this study, we conducted a gasket model include a flange surface roughness effect. A finite element method was employed to develop simulation solution. A uniform quadratic mesh used for meshing the gasket material and a gradually quadrilateral mesh used for meshing the flange. The gasket model was simulated by using two simulation stages which is forming and tightening simulation. A simulation result shows that a smoother of surface roughness has higher slope for force per unit length. This mean a squeezed against between flange and gasket will be strong. The slope of force per unit length for gasket 400-MPa mode was higher than the gasket 0-MPa mode.

Keywords: Surface roughness, flange, metal gasket, leakage, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
956 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel

Authors: W. Handoko, F. Pahlevani, V. Sahajwalla

Abstract:

Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.

Keywords: High carbon steel, austenite stability, atomic force microscopy, corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
955 Passenger Seat Vibration Control of Quarter Car System with MR Shock Absorber

Authors: Devdutt, M. L. Aggarwal

Abstract:

Semi-active Fuzzy control of quarter car system having three degrees of freedom and assembled with magneto-rheological (MR) shock absorber is studied in present paper. First, experimental work was performed on an MR shock absorber under different excitation conditions to obtain force-displacement and force-velocity curves. Then, for the application of experimental data in semi-active quarter car system, a polynomial model was selected. Finally, Fuzzy logic controller was designed having the combination of Forward fuzzy controller and Inverse fuzzy controller for integration in secondary suspension system of concerned model. The proposed controlled quarter car model was compared with uncontrolled system using simulation work under bump type of road excitation. Results obtained by simulation work shows the effectiveness of fuzzy controlled suspension system in improving the ride comfort and safety of travelling passengers compared to uncontrolled suspension system.

Keywords: MR shock absorber, three degrees of freedom, quarter car model, fuzzy controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296
954 Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network

Authors: Anamika Jain, A. S. Thoke, R. N. Patel

Abstract:

This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.

Keywords: Double circuit transmission line, Fault detection and classification, High impedance fault and Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3187
953 Wind Interference Effect on Tall Building

Authors: Atul K. Desai, Jigar K. Sevalia, Sandip A. Vasanwala

Abstract:

When a building is located in an urban area, it is exposed to a wind of different characteristics then wind over an open terrain. This is development of turbulent wake region behind an upstream building. The interaction with upstream building can produce significant changes in the response of the tall building. Here, in this paper, an attempt has been made to study wind induced interference effects on tall building. In order to study wind induced interference effect (IF) on Tall Building, initially a tall building (which is termed as Principal Building now on wards) with square plan shape has been considered with different Height to Width Ratio and total drag force is obtained considering different terrain conditions as well as different incident wind direction. Then total drag force on Principal Building is obtained by considering adjacent building which is termed as Interfering Building now on wards with different terrain conditions and incident wind angle. To execute study, Computational Fluid Dynamics (CFD) Code namely Fluent and Gambit have been used.

Keywords: Computational Fluid Dynamics, Tall Building, Turbulent, Wake Region, Wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3803
952 Experimental and Analytical Study of Scrap Tire Rubber Pad for Seismic Isolation

Authors: Huma Kanta Mishra, Akira Igarashi

Abstract:

A seismic isolation pad produced by utilizing the scrap tire rubber which contains interleaved steel reinforcing cords has been proposed. The steel cords are expected to function similar to the steel plates used in conventional laminated rubber bearings. The scrap tire rubber pad (STRP) isolator is intended to be used in low rise residential buildings of highly seismic areas of the developing countries. Experimental investigation was conducted on unbonded STRP isolators, and test results provided useful information including stiffness, damping values and an eventual instability of the isolation unit. Finite element analysis (FE analysis) of STRP isolator was carried out on properly bonded samples. These types of isolators provide positive incremental force resisting capacity up to shear strain level of 155%. This paper briefly discusses the force deformation behavior of bonded STRP isolators including stability of the isolation unit.

Keywords: base isolation, buckling load, finite element analysis, STRP isolators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2953
951 Some Issues on Integrating Telepresence Technology into Industrial Robotic Assembly

Authors: Gunther Reinhart, Marwan Radi

Abstract:

Since the 1940s, many promising telepresence research results have been obtained. However, telepresence technology still has not reached industrial usage. As human intelligence is necessary for successful execution of most manual assembly tasks, the ability of the human is hindered in some cases, such as the assembly of heavy parts of small/medium lots or prototypes. In such a case of manual assembly, the help of industrial robots is mandatory. The telepresence technology can be considered as a solution for performing assembly tasks, where the human intelligence and haptic sense are needed to identify and minimize the errors during an assembly process and a robot is needed to carry heavy parts. In this paper, preliminary steps to integrate the telepresence technology into industrial robot systems are introduced. The system described here combines both, the human haptic sense and the industrial robot capability to perform a manual assembly task remotely using a force feedback joystick. Mapping between the joystick-s Degrees of Freedom (DOF) and the robot-s ones are introduced. Simulation and experimental results are shown and future work is discussed.

Keywords: Assembly, Force Feedback, Industrial Robot, Teleassembly, Telepresence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
950 Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results

Authors: A. Pourkamali Anaraki, M. Shahabizadeh, B. Babaee

Abstract:

The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.

Keywords: Deep drawing, Finite element method, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5078
949 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.

Keywords: Permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
948 Technological Environment - International Marketing Strategy Relationship

Authors: Suthawan Chirapanda

Abstract:

International trade involves both large and small firms engaged in business overseas. Possible drivers that force companies to enter international markets include increasing competition at the domestic market, maturing domestic markets, and limited domestic market opportunities. Technology is an important driving factor in shaping international marketing strategy as well as in driving force towards a more global marketplace, especially technology in communication. It includes telephones, the internet, computer systems and e-mail. There are three main marketing strategy choices, namely standardization approach, adaptation approach and middleof- the-road approach that companies implement to overseas markets. The decision depends on situations and factors facing the companies in the international markets. In this paper, the contingency concept is considered that no single strategy can be effective in all contexts. The effect of strategy on performance depends on specific situational variables. Strategic fit is employed to investigate export marketing strategy adaptation under certain environmental conditions, which in turn can lead to superior performance.

Keywords: Contingency approach, international marketing strategy, strategic fit, technological environment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6782
947 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
946 Electrically Conducting Lubricants: Esterified Carbon Nanotubes

Authors: Wei Chin, Wen-Kuang Hsu

Abstract:

Fats and oils are made of esterified hydrocarbons (RCOOR-) and this work demonstrates the substitution of R by multi-walled CNTs (MWNTs). The resultant materials are fluidic, oily, electrically conducting and excellent lubricants. Esterified MWNTs can also respond to magnetic field when tubules contain long segments of Fe

Keywords: Liquids Nanomaterials Electric conductors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
945 The Effects of Cross-Border Use of Drones in Nigerian National Security

Authors: H. P. Kerry

Abstract:

Drone technology has become a significant discourse in a nation’s national security, while this technology could constitute a danger to national security on the one hand, on the other hand, it is used in developed and developing countries for border security, and in some cases, for protection of security agents and migrants. In the case of Nigeria, drones are used by the military to monitor and tighten security around the borders. However, terrorist groups have devised a means to utilize the technology to their advantage. Therefore, the potential danger in the widespread proliferation of this technology has become a myriad of risks. The research on the effects of cross-border use of drones in Nigerian national security looks at the negative and positive consequences of using drone technology. The study employs the use of interviews and relevant documents to obtain data while the study applied the Just War theory to justify the reason why countries use force; it further buttresses the points with what the realist theory thinks about the use of force. In conclusion, the paper recommends that the Nigerian government through the National Assembly should pass a bill for the establishment of a law that will guide the use of armed and unarmed drones in Nigeria enforced by the Nigeria Civil Aviation Authority and the office of the National Security Adviser.

Keywords: Armed drones, cross-border, drones, national security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
944 Viability of Slab Sliding System for Single Story Structure

Authors: C. Iihoshi, G.A. MacRae, G.W. Rodgers, J.G. Chase

Abstract:

Slab sliding system (SSS) with Coulomb friction  interface between slab and supporting frame is a passive structural  vibration control technology. The system can significantly reduce the  slab acceleration and accompanied lateral force of the frame. At the  same time it is expected to cause the slab displacement magnification  by sliding movement. To obtain the general comprehensive seismic  response of a single story structure, inelastic response spectra were  computed for a large ensemble of ground motions and a practical range  of structural periods and friction coefficient values. It was shown that  long period structures have no trade-off relation between force  reduction and displacement magnification with respect to elastic  response, unlike short period structures. For structures with the  majority of mass in the slab, the displacement magnification value can  be predicted according to simple inelastic displacement relation for  inelastically responding SDOF structures because the system behaves  elastically to a SDOF structure.

 

Keywords: Earthquake, Isolation, Slab, Sliding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
943 A Force-directed Graph Drawing based on the Hierarchical Individual Timestep Method

Authors: T. Matsubayashi, T. Yamada

Abstract:

In this paper, we propose a fast and efficient method for drawing very large-scale graph data. The conventional force-directed method proposed by Fruchterman and Rheingold (FR method) is well-known. It defines repulsive forces between every pair of nodes and attractive forces between connected nodes on a edge and calculates corresponding potential energy. An optimal layout is obtained by iteratively updating node positions to minimize the potential energy. Here, the positions of the nodes are updated every global timestep at the same time. In the proposed method, each node has its own individual time and time step, and nodes are updated at different frequencies depending on the local situation. The proposed method is inspired by the hierarchical individual time step method used for the high accuracy calculations for dense particle fields such as star clusters in astrophysical dynamics. Experiments show that the proposed method outperforms the original FR method in both speed and accuracy. We implement the proposed method on the MDGRAPE-3 PCI-X special purpose parallel computer and realize a speed enhancement of several hundred times.

Keywords: visualization, graph drawing, Internet Map

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
942 Energy Interaction among HVAC and Supermarket Environment

Authors: D. Woradechjumroen, H. Li, Y. Yu

Abstract:

Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easyto- use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions).The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study the FDD research for supermarkets in future.

Keywords: Energy interaction, HVAC, R-value, Supermarket buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3225
941 On Finite Hjelmslev Planes of Parameters (pk−1, p)

Authors: Atilla Akpinar

Abstract:

In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.

Keywords: Finite Klingenberg plane, finite hyperbolic Klingenberg plane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
940 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: Collision, finite element method, Hertz’s Theory, impact models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
939 Prophylactic Effects of Dairy Kluyveromyces marxianus YAS through Overexpression of BAX, CASP 3, CASP 8 and CASP 9 on Human Colon Cancer Cell Lines

Authors: Amir Saber Gharamaleki, Beitollah Alipour, Zeinab Faghfoori, Ahmad YariKhosroushahi

Abstract:

Colorectal cancer (CRC) is one of the most prevalent cancers and intestinal microbial community plays an important role in colorectal tumorigenesis. Probiotics have recently been assessed as effective anti-proliferative agents and thus this study was performed to examine whether CRC undergo apoptosis by treating with isolated Iranian native dairy yeast, Kluyveromyces marxianus YAS, secretion metabolites. The cytotoxicity assessments on cells (HT-29, Caco-2) were accomplished through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as well as qualitative DAPI (4',6-diamidino-2-phenylindole staining) and quantitative (flow cytometry assessments) evaluations of apoptosis. To evaluate the main mechanism of apoptosis, Real time PCR method was applied. Kluyveromyces marxianus YAS secretions (IC50) showed significant cytotoxicity against HT-29 and Caco-2 cancer cell lines (66.57 % and 66.34 % apoptosis) similar to 5-Fluorouracil (5-FU) while apoptosis only was developed in 27.57 % of KDR normal cells. The prophylactic effects of Kluyveromyces marxianus (PTCC 5195), as a reference yeast, was not similar to Kluyveromyces marxianus YAS indicating strain dependency of bioactivities on CRC disease prevention. Based on real time PCR results, the main cytotoxicity is related to apoptosis phenomenon and the core related mechanism is depended on the overexpression of BAX, CASP 9, CASP 8 and CASP 3 inducing apoptosis genes. However, several investigations should be conducted to precisely determine the effective compounds to be used as anticancer therapeutics in the future.

Keywords: Anticancer, anti-proliferative, apoptosis, cytotoxicity, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
938 Student Perceptions of Defense Acquisition University Courses: An Explanatory Data Collection Approach

Authors: Melissa C. LaDuke

Abstract:

The overarching purpose of this study was to determine the relationship between the current format of online delivery for Defense Acquisition University (DAU) courses and Air Force Acquisition (AFA) personnel participation. AFA personnel (hereafter named “student”) were particularly of interest, as they have been mandated to take anywhere from 3 to 30 online courses to earn various DAU specialization certifications. Participants in this qualitative case study were AFA personnel who pursued DAU certifications in science and technology management, program/contract management, and other related fields. Air Force personnel were interviewed about their experiences with online courses. The data gathered were analyzed and grouped into 12 major themes. The themes tied into the theoretical framework and addressed either teacher-centered or student-centered educational practices within DAU. Based on the results of the data analysis, various factors contributed to student perceptions of DAU courses to include the online course construct and relevance to their job. The analysis also found students want to learn the information presented but would like to be able to apply the information learned in meaningful ways.

Keywords: Educational theory, computer-based training, interview, student perceptions, online course design, teacher positionality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199
937 Effect of Cooling Coherent Nozzle Orientation on the Machinability of Ti-6Al-4V in Step Shoulder Milling

Authors: Salah Gariani, Islam Shyha, Osama Elgadi, Khaled Jegandi

Abstract:

In this work, a cooling coherent round nozzle was developed and the impact of nozzle placement (i.e. nozzle angle and stand-off/impinging distance) on the machinability of Ti-6Al-4V was evaluated. Key process measures were cutting force, workpiece temperature, tool wear, burr formation and average surface roughness (Ra). Experimental results showed that nozzle position at a 15° angle in the feed direction and 45°/60° against feed direction assisted in minimising workpiece temperature. A stand-off distance of 55 and 75 mm is also necessary to control burr formation, workpiece temperature and Ra, but coherent nozzle orientation has no statistically significant impact on the mean values of cutting force and tool wear. It can be concluded that stand-off distance is more substantially significant than nozzle angles when step shoulder milling Ti-6Al- 4V using vegetable oil-based cutting fluid.

Keywords: Coherent round nozzle, step shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438
936 Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator

Authors: Raja Singh Khela, R. K. Bansal, K. S. Sandhu, A. K. Goel

Abstract:

Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.

Keywords: Self-Excited Induction Generator, Artificial NeuralNetworks, Exciting Capacitance and Saturated magnetizingreactance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
935 Preparation of Fe3Si/Ferrite Micro- and Nano-Powder Composite

Authors: R. Bures, M. Streckova, M. Faberova, P. Kurek

Abstract:

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

Keywords: Micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3793
934 Comparative Study on Soil Tillage Using Rotary Tiller and Power Harrow

Authors: Watcharachan Sukcharoenvipharat, Prathuang Usaborisut, Sirisak Choedkiatphon

Abstract:

Farmers try to reduce steps of soil preparation by using subsoiler and then following by equipment for soil pulverization such as a rotary tiller and a power harrow which take advantage of using a power take-off of a tractor. Therefore, this study was conducted to compare the tilling performances of a rotary tiller and a power harrow applying after subsoiling. The results showed that both the rotary tiller and the power harrow had negative slip, indicating that they generated force to push a tractor. The rotary tiller created negative vertical force to lift up the tractor whereas opposite result was found when using the power harrow. Since working depths were different, vertical forces, torques and PTO powers for two equipment types were significantly different. However, no significant differences were found for the forward speeds, slips, drawbar pulls and drawbar powers. Comparative analysis showed that two equipment types had significant difference in PTO power to working depth, drawbar power to working depth, PTO power to working area, drawbar power to working area and soil pulverization.

Keywords: Rotary tiller, power harrow, drawbar pull, drawbar power, PTO power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
933 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and Weight on Bit (WOB) used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036 m3/h and -2.374 m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. The best combination of funnel viscosity, final shear force and drilling time is obtained through quantitative calculation. The minimum loss rate of lost circulation wells in Shunbei area is 10 m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: Drilling fluid, loss rate, main controlling factors, Unmanned Intervention Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
932 Using Non-Linear Programming Techniques in Determination of the Most Probable Slip Surface in 3D Slopes

Authors: M. M. Toufigh, A. R. Ahangarasr, A. Ouria

Abstract:

Among many different methods that are used for optimizing different engineering problems mathematical (numerical) optimization techniques are very important because they can easily be used and are consistent with most of engineering problems. Many studies and researches are done on stability analysis of three dimensional (3D) slopes and the relating probable slip surfaces and determination of factors of safety, but in most of them force equilibrium equations, as in simplified 2D methods, are considered only in two directions. In other words for decreasing mathematical calculations and also for simplifying purposes the force equilibrium equation in 3rd direction is omitted. This point is considered in just a few numbers of previous studies and most of them have only given a factor of safety and they haven-t made enough effort to find the most probable slip surface. In this study shapes of the slip surfaces are modeled, and safety factors are calculated considering the force equilibrium equations in all three directions, and also the moment equilibrium equation is satisfied in the slip direction, and using nonlinear programming techniques the shape of the most probable slip surface is determined. The model which is used in this study is a 3D model that is composed of three upper surfaces which can cover all defined and probable slip surfaces. In this research the meshing process is done in a way that all elements are prismatic with quadrilateral cross sections, and the safety factor is defined on this quadrilateral surface in the base of the element which is a part of the whole slip surface. The method that is used in this study to find the most probable slip surface is the non-linear programming method in which the objective function that must get optimized is the factor of safety that is a function of the soil properties and the coordinates of the nodes on the probable slip surface. The main reason for using non-linear programming method in this research is its quick convergence to the desired responses. The final results show a good compatibility with the previously used classical and 2D methods and also show a reasonable convergence speed.

Keywords: Non-linear programming, numerical optimization, slope stability, 3D analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619