WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/9999881,
	  title     = {Energy Interaction among HVAC and Supermarket Environment},
	  author    = {D. Woradechjumroen and  H. Li and  Y. Yu},
	  country	= {},
	  institution	= {},
	  abstract     = {Supermarkets are the most electricity-intensive type of
commercial buildings. The unsuitable indoor environment of a
supermarket provided by abnormal HVAC operations incurs waste
energy consumption in refrigeration systems. This current study
briefly describes significantly solid backgrounds and proposes easyto-
use analysis terminology for investigating the impact of HVAC
operations on refrigeration power consumption using the field-test
data obtained from building automation system (BAS). With solid
backgrounds and prior knowledge, expected energy interactions
between HVAC and refrigeration systems are proposed through
Pearson’s correlation analysis (R value) by considering correlations
between equipment power consumption and dominantly independent
variables (driving force conditions).The R value can be conveniently
utilized to evaluate how strong relations between equipment
operations and driving force parameters are. The calculated R values
obtained from field data are compared to expected ranges of R values
computed by energy interaction methodology. The comparisons can
separate the operational conditions of equipment into faulty and
normal conditions. This analysis can simply investigate the condition
of equipment operations or building sensors because equipment could
be abnormal conditions due to routine operations or faulty
commissioning processes in field tests. With systematically solid and
easy-to-use backgrounds of interactions provided in the present
article, the procedures can be utilized as a tool to evaluate the proper
commissioning and routine operations of HVAC and refrigeration
systems to detect simple faults (e.g. sensors and driving force
environment of refrigeration systems and equipment set-point) and
optimize power consumption in supermarket buildings. Moreover,
the analysis will be used to further study the FDD research for
supermarkets in future.
},
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {8},
	  number    = {12},
	  year      = {2014},
	  pages     = {1230 - 1237},
	  ee        = {https://publications.waset.org/pdf/9999881},
	  url   	= {https://publications.waset.org/vol/96},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 96, 2014},
	}