Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings
Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov
Abstract:
At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1115342
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329References:
[1] V.F. Makarov, S. Beloborodov, A.Y. Kovalev, Application of methods adaptive balancing and assembly to ensure the dynamic stability of the rotors of gas- transmittal units (In Russian). Compressor equipment and pneumatics, no. 6, pp. 37-40. 2010. (Применение методов адаптивной балансировки и сборки для обеспечения динамической устойчивости роторов газотурбинных агрегатов).
[2] V.F. Makarov, S. Beloborodov, A.Y. Kovalev, Technological support vibration protection of shafting elements (In Russian). Compressor equipment and pneumatics, no. 3, pp. 14-17. 2011. (Технологическое обеспечение виброзащиты элементов валопровода).
[3] V.E. Saren, Aeroelastic vibrations blade row axial turbomachine (In Russian). Problems of mechanical engineering and reliability of machines, no. 1, pp. 21-27. 2010. (Аэроупругие колебания лопаточного венца осевой турбомашины).
[4] G.S. Pisarenko, Aeroelasticity of turbomachinery (In Russian). Ed by GS Pisarenko. Kiev: Naukova Dumka, 1980. (Аэроупругость турбомашин)
[5] G.S. Samoylovich. Unsteady flow and aeroelastic vibrations of turbomachinery lattices (In Russian). Ed by GS Samoylovich. Moscow: Nauka Publisher, 1969. (Нестационарное обтекание и аэроупругие колебания решеток турбомашин).
[6] E. V. Mekhonoshina, V.Ya. Modorskiy, On a phase-shift of waves at the medium interface, (In Russian). Computer Optics, vol. 39, no. 3, pp. 385-391. 2015.
[7] V. Y. Modorskiy, A. F. Shmakov, Numerical Modeling of Gas-dynamic Processes and Processes of Deformation in Compressor of Model Test Bench of the Gas-Distributing Unit, Applied Mechanics and Materials, Vols. 799-800, pp. 865-869, Oct. 2015.
[8] S.K. Betyaev, On the history of fluid dynamics: Russian scientific schools in the 20th century, Moscow: Physics-Uspekhi, vol. 173, no. 4, pp. 419-446. 2003.
[9] T. P. Arsentiev, The Abstract of the thesis Fluctuations of a wing in a supersonic stream of gas (In Russian): PhD thesis abstract physical and mathematical science. St. Petersburg State. University, St. Petersburg., 2009– Source: http://www.dissercat.com/content/kolebaniya-kryla-vsverkhzvukovom-potoke-gaza-0
[10] H. Blasius, Über Schwingungserscheinungen an Einholmigen Unterflügeln, Zeitschrift für Fugtechnik und Motorluftschiffahrt, vol. 16, pp. 39-45. 1925.
[11] A.S. Volmir, Nonlinear dynamics of plates and Covers” (In Russian). Ed by Kildibekov IG. Moscow: Nauka Publisher, 1972.
[12] A. G. Gorshkov, V.I. Morozov, A.T. Ponomarev, F.N. Shklyarchuk, Aero hydroelasticity of designs (In Russian). Moscow: Fizmatlit Publisher, 2000.
[13] V.Ya. Modorsky, Yu.V. Sokolkin, Gas-elastic processes in power installations (In Russian). Ed by YuV Sokolkin. Moscow: Nauka Publisher, 2007.
[14] N. V. Shuvaev, Numerical modeling methodology for the aeroelastic interaction of the gas turbine engine compressor blades with the subsonic ram air stream (In Russian). : Ph.D. thesis in Engineering Science. – Perm, 2014 . – 133 p. (Методика численного моделирования аэроупругого взаимодействия компрессорных лопаток газотурбинного двигателя с дозвуковым набегающим потоком воздуха).
[15] Y. Galerkin, A. Rekstin, K. Soldatova, Aerodynamic Designing of Supersonic Centrifugal Compressor Stages, World Academy of Science Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:9, No:1, 2015, pp. 123-127.
[16] Y. B. Galerkin, E. Y. Popova, K. V. Soldatova, Calculation Analysis of an Axial Compressor Supersonic Stage Impeller, World Academy of Science Engineering and Technology International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:9, No:1, 2015, pp. 118-122.
[17] Y. Galerkin, O. Solovieva, Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers, World Academy of Science Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:9, No:1, 2015, pp. 128-133.
[18] R. A. Zagitov, N. V. Shuvaev, A. N. Dushko, Y. N. Shmotin Numerical Simulation of Unsteady Flow Around Oscillating Blade, Proceedings of ASME Turbo Expo 2012, June 11-15, Copenhagen, Denmark, 2012. – GT2012- 69458
[19] Ch. Xiangying, Zh. Ge-Cheng, Ya. Ming-Ta, Numerical simulation of 3-D wing flutter with fully coupled fluid–structural interaction, Computers & Fluids, vol. 36, pp. 856–867. 2007.
[20] Z. Jianping, G. Liang, W. Helen, Zh. Aixi, H. Danmei, R. Jianxing, The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluid–structure interaction, Ocean Engineering, vol. 84, pp. 14-19. 2014.
[21] D. H. Kim, Y. H. Kim, Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect, World Academy of Science Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:5, No:9, 2011, pp. 1855-1859.
[22] S.P. Kopysov, L.E. Tonkov, A.A. Chernova, Bilateral binding when modeling interaction of a supersonic stream and deformable plate. Comparison of numerical schemes and results Experiment (In Russian). Computational Continuum Mechanics, vol. 6, no. 1, pp. 78-85. 2013.
[23] J. Giordano, G. Jourdan., Y. Burtschell, M. Medale, D.E. Zeitoun, L. Houas, Shock wave impacts on deforming panel, an application of fluid-structure interaction, Shock Waves, vol. 14, no. 1-2, pp. 103-110. 2005. DOI 10.1007/s00193-005-0246-9.
[24] ANSYS Structural Analysis Guide, Release 15.0. Source:
[25] E. Wang, T. Nelson, Structural Dynamic Capabilities of ANSYS. Source: