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Abstract—In this paper, we study on finite projective Hjelmslev
planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime
power q = pk). We obtain finite hyperbolic Klingenberg planes from
these planes under certain conditions. Also, we give a combinatorical
result on M(Zq), related by deleting a line from lines in same
neighbour.

Keywords—finite Klingenberg plane, finite hyperbolic Klingenberg
plane.

I. INTRODUCTION

Projective Klingenberg and Hjelmslev planes (more briefly:
PK-planes and PH-planes, resp.) are generalizations of ordi-
nary projective planes. These structures were introduced by
Klingenberg in [17], [18]. Finite PK-planes introduced by
Drake and Lenz in [10] have been studied in detail by Bacon
in [5]. As for finite hyperbolic Klingenberg planes (briefly,
HK-planes), these structures introduced by Celik in [8].

In our previous papers [1], [9] we have studied a cer-
tain class (which we will denote by M(A)) of Moufang-
Klingenberg (briefly, MK) planes coordinatized by a local
alternative ring A := A (ε) = A + Aε of dual numbers (an
alternative ring A, ε /∈ A and ε2 = 0) introduced by Blunck in
[7]. Besides, in the papers of [2], [3] we have dealed with finite
Klingenberg planes of parameters (p2k−1, p), coordinatized by
a local ring Zq + Zqε which is not a H-ring.

In the present paper we are interested in finite PK-planes
M(Zq) coordinatized by local ring Zq (where q is a prime
power), which is also an H-ring. So, we will show that the
planes obtained by deleting m equivalence classes of lines
(which are pairwise non-neighbour lines such that no three
of them are concurrent) from the finite PK-plane M(Zq) are
examples of finite hyperbolic Klingenberg planes, in the sense
of [8]. Finally, we give a combinatorical result on M(Zq),
related by deleting a line from lines in same neighbour.

II. PRELIMINARIES

Let M = (P,L,∈,∼) consist of an incidence structure
(P,L,∈)(points, lines, incidence) and an equivalence relation
‘∼’ (neighbour relation) on P and on L. Then M is called
a projective Klingenberg plane (PK-plane), if it satisfies the
following axioms:

(PK1) If P,Q are two non-neighbour points, then there is
a unique line PQ through P and Q.

(PK2) If g, h are two non-neighbour lines, then there is a
unique point g ∧ h on both g and h.
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(PK3) There is a projective plane M∗ = (P∗,L∗,∈) and
incidence structure epimorphism Ψ : M → M∗, such that the
conditions

Ψ(P ) = Ψ(Q) ⇔ P ∼ Q, Ψ(g) = Ψ(h) ⇔ g ∼ h

hold for all P,Q ∈ P, g, h ∈ L.

PK-plane M is called a projective Hjelmslev plane (PH-
plane) If M furthermore provides the following axioms:

(PH1) If P,Q are two neighbour points, then there are at
least two lines through P and Q.

(PH2) If g, h are two neighbour lines, then there are at least
two points on both g and h.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M∗ is a
Moufang plane (for the details see [4]).

A point P ∈ P is called near a line g ∈ L iff there exists
a line h such that P ∈ h for some line h ∼ g.

Now we give the definition of an n-gon, which is meaningful
when n ≥ 3: An n-tuple of pairwise non-neighbour points is
called an (ordered) n-gon if no three of its elements are on
neighbour lines [9].

Let M = (P,L,∈, ‖,∼) consist of an incidence structure
(P,L,∈)(points, lines, incidence), an equivalence relation ‘‖’
on L (parallelism relation) and also an equivalence relation
‘∼’ (neighbour relation) on P and on L. Then M is called
a hyperbolic Klingenberg plane (HK-plane), if it satisfies the
following axioms:

(HK1) If P,Q are two non-neighbour points, then there is
a unique line PQ through P and Q.

(HK2) If l ∈ L, then there is P,Q ∈ l such that P is not
neighbour to Q.

(HK3) There exists at least one 4-gon.
(HK4) For each point-line pair (P, l) where P is not near to

l, there are at least two non-neighbour lines through P parallel
to l.

(HK5) There is a hyperbolic plane M∗ = (P∗,L∗,∈) and
incidence structure epimorphism Ψ : M → M∗, such that the
conditions

Ψ(P ) = Ψ(Q) ⇔ P ∼ Q, ∀P,Q ∈ P

Ψ(g) = Ψ(h) ⇔ g ∼ h, ∀g, h ∈ L

and if there is no point on both g and h then Ψ(g) ‖ Ψ(h).

An alternative ring (field) R is a not necessarily associative
ring (field) that satisfies the alternative laws a(ab) = a2b,
(ba)a = ba2, ∀a, b ∈ R. An alternative ring R with identity
element 1 is called local if the set I of its non-unit elements
is an ideal.
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We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [6].

Let R be a local alternative ring. Then M(R) = (P,L,∈
,∼) is the incidence structure with neighbour relation defined
as follows:

P = {(x, y, 1)| x, y ∈ R}
∪{(1, y, z) : y ∈ R, z ∈ I}
∪{(w, 1, z) : w, z ∈ I},

L = {[m, 1, p] : m, p ∈ R}
∪{[1, n, p] : p ∈ R, n ∈ I}
∪{[q, n, 1] : q, n ∈ I}

[m, 1, p] = {(x, xm+ p, 1) : x ∈ R}
∪ {(1, zp+m, z) : z ∈ I} ,

[1, n, p] = {(yn+ p, y, 1) : y ∈ R}
∪ {(zp+ n, 1, z) : z ∈ I} ,

[q, n, 1] = {(1, y, yn+ q) : y ∈ R}
∪ {(w, 1, wq + n) : w ∈ I}

and

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q

⇔ xi − yi ∈ I (i = 1, 2, 3)),∀P,Q ∈ P;
g = [x1, x2, x3] ∼ [y1, y2, y3] = h

⇔ xi − yi ∈ I (i = 1, 2, 3)),∀g, h ∈ L.

For more detailed information about the coordinatization see
[4] and [6].

Now it is time to give the following theorem from [4].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Moreover, we can state the following, from [11, Theorem
4.1].

Theorem 2.2: If R is a (not necessarily commutative) local
ring then M(R) is a PK-plane.

Drake and Lenz [10, Proposition 2.5] observed that the
following corollary is true for PK-planes. This corollary is
a generalization of results which are given for PH-planes by
Kleinfeld [16, Theorem 1] and Lüneburg [19, Satz 2.11].

Corollary 2.3: Let M(R) be PK-plane. Then there are
natural numbers t and r which are called the parametres
of M(R) and they are uniquely determined by incidence
structure of a finite PK-plane [10, Proposition 2.7], with

1) every point (line) has t2 neighbours;
2) given a point P and a line l with P ∈ l, there exist

exactly t points on l which are neighbours to P and
exactly t lines through P which are neighbours to l;

3) Let r be order of the projective plane M∗. If t �= 1 we
have r ≤ t (then M is called proper; we have t = 1 iff
M is an ordinary projective plane)

4) every point (line) is incident with t (r + 1) lines (points);

5) |P| = |L| = t2
(
r2 + r + 1

)
.

Now consider ring Zq where prime power q = pk. We can
state the elements of Zq as Zq = U′ ∪ I where U′ is the set
of units of Zq and I is the set of non-units of Zq. Here it is
clear that I =

{
0p, 1p, 2p, ...,

(
pk−1 − 1

)
p
}

= pZq for all p
primes, and so |I| = pk−1. Since Zq is a proper local ring and
Zq/I = Zp, Ψ induces an incidence structure epimorphism
from finite PK-plane M(Zq) onto the Desarguesian projective
plane (with order p) coordinatized by the field Zp [11, page
169, above Theorem 4.1]. So, we have the following

Corollary 2.4: For finite PK-plane M(Zq), the parameters
t and r in Corollary 2.3 are equal to pk−1 and p, respectively.

A local ring R is called a Hjelmslev ring (briefly, H-ring)
if it satisfies the following two conditions:

(HR1) I consists of two-sided zero divisor.
(HR2) For a, b ∈ I, one has a ∈ bR or b ∈ aR, and also

a ∈ Rb or b ∈ Ra.
By the last definition, we can say that Zq is an H-ring with

maximal ideal I [11, example 4.8.b].

Now it is time to give the following theorem from [17].

Theorem 2.5: Let R be a local ring; M(R) be the Desar-
guesian PK-plane over R. Then R is an H-ring if and only if
M(R) is a PH-plane.

So, we can immediately say that M(Zq) is a PH-plane. Now
we give the following theorem from [12].

Theorem 2.6: Let R be a finite H-ring with maximal ideal
I, and write r = |R/I|. Then |R| = rn for some positive
integer n, and M(R) is an n-uniform PH-plane.

By the last theorem, we can say that M(Zq) is a k-uniform
PH-plane since |Zq/I| = p and |Zq| = pk.

From now on we assume char Zq �= 2 and also we restrict
ourselves to finite PH-plane M(Zq) = (P,L,∈,∼) coordina-
tized by H-ring Zq, with neighbour relation defined above.

III. CONSTRUCTION OF FINITE HYPERBOLIC

KLINGENBERG PLANES

It is well known that if a line is deleted from a projective
plane then the remaining substructure forms an affine plane.
Sandler [20] showed that if three non-concurrent lines are
deleted from a projective plane then the remaining struc-
ture forms a hyperbolic plane in the sense of Graves [13].
Sandler’s construction is extended by Kaya-Özcan [15], and
it is obtained that result: if m lines no three of which are
non-concurrent lines are deleted from a projective plane then
the remaining structure forms a hyperbolic plane. Now we
will adopt the method of [15] to obtain a finite hyperbolic
Klingenberg plane from finite PK-plane M(Zq).

In M(Zq), let l1, l2, l3, · · · , lm be pairwise non-neighbour
lines such that no three of them are concurrent. M(Zq)m =
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(Pm,Lm,∈,∼) be substructure obtained from M(Zq) by
deleting all lines li with the points which are near to li for
i = 1, 2, 3, · · · ,m and m ≥ 3 is any natural number.

Some combinatorics properties of M(Zq)m are given in [8,
Section III and IV]. By [8, Lemma 3.1] we give some basic
combinatorical properties which are valid in M(Zq)m. So, we
have the following corollary.

Corollary 3.1: Following properties are valid in M(Zq)m

where m ≤ p+ 2:

1) Two non-neighbour points of M(Zq)m are on exactly
one line.

2) Through each point of M(Zq)m there pass exactly
pk−1(p+ 1) lines and there pass exactly p+ 1 pairwise
non-neighbour lines of M(Zq)m.

3) There are exactly
(
pk−1

)2 (
p2 + p+ 1 −m

)
lines and

there are exactly p2 +p+1−m pairwise non-neighbour
lines in M(Zq)m.

4) There are exactly
(
pk−1

)2
p2 + (pk−1)2

2 (m− 1)
(m− 2p− 2) points and there are exactly p2 +
1
2 (m− 1) (m− 2p− 2) pairwise non-neighbour points
in M(Zq)m.

Now we give the following definition from [8].

A point of M(Zq) is called corner point if it is an
intersection point of any two non-neighbour lines in the set
of deleted lines.

By this definition and its combinatoric properties [8, from
Lemma 3.2 to Propositon 3.1] we can say that M(Zq)m

is an example of finite hyperbolic Klingenberg Planes. The
following corollary is related to this [8, Proposition 3.1].

Corollary 3.2: Let n be the minimum number of pairwise
non-neighbour corner points on a line of M(Zq)m. If 3 ≤ m ≤
p+ n+ 1

2 (1−√
4p+ 5), then M(Zq)m is a finite hyperbolic

Klingenberg Plane.

Now we would like to give a combinatoric result on M(Zq),
related to the number of points on the remaining lines in this
neighbour when it is deleted a line with the points near to this
line from lines in same neighbour, by using some incidence
matrices of M(Zq).

Lines in same neighbour intersect at pi points where 1 ≤
i ≤ k−1 to neighbour of a certain point on the lines. The table
I gives more detailed information about this. For example, in
M(Z33), lines in same neighbour intersect at 3 or 32 points to
neighbour of a certain point on the lines. The number of the
lines which intersect at 3 or 32 points are 18 or 2, respectively.

For finite PH-plane M(Zpk), we obtain that generalization:
”the number of lines which intersect at pi points where 1 ≤
i ≤ k − 1 to neighbour of a certain point on the lines is
(p− 1)p2(k−1−i)”.

If we extend this calculation to all points of a line, by
considering p+ 1 points on a line, then we reach the number

TABLE I
INTERSECTION OF LINES IN THE SAME NEIGHBOUR

p p2 p3 · · · pk−1

M(Z22 ) 1(p − 1) . . · · · .

M(Z23 ) 4 1 . . · · ·
M(Z24 ) 2.23 2.2 1 · · · .

M(Z32 ) 2(p − 1) . . · · · .

M(Z33 ) 3.6 2 . · · · .

· · · · · · · · · · · · · · · · · ·
M(Zpk ) (p − 1)p2(k−2) (p − 1)p2(k−3) (p − 1)p2(k−4) · · · p − 1

of lines in a neighbour, that is,

(p+ 1)
k−1∑
i=1

(p− 1)p2(k−1−i)

= (p+ 1) (p− 1)p2(k−1)
k−1∑
i=1

p−2i

=
(
p2 − 1

)
p2(k−1) p−2

1 − p−2

=
(
p2 − 1

)
p2(k−1) 1

(p2 − 1)

= p2(k−1) =
(
pk−1

)2
.

So, as a result, we can say that lines in same neighbour
intersect at points in same property to neighbour of any
point. For lines in same neighbour, the number of lines which
intersect at p points is

(p+ 1) (p− 1)p2(k−2) =
(
p2 − 1

)
p2(k−2),

the number of lines which intersect at p2 points is

(p+ 1) (p− 1)p2(k−3) =
(
p2 − 1

)
p2(k−3),

the number of lines which intersect at p3 points is

(p+ 1) (p− 1)p2(k−4) =
(
p2 − 1

)
p2(k−4),

the number of lines which intersect at pk−2 points is

(p+ 1) (p− 1)p2(k−k+1) =
(
p2 − 1

)
p2,

and finally the number of lines which intersect at pk−1 points
is

(p+ 1) (p− 1)p2(k−k) =
(
p2 − 1

)
.

Now, we can give some results about the number of points
on the remaining lines when any one (with points near to this
line) of lines in same neighbour deletes from the neighbour.
Of lines in same neighbour, it is deleted that

p points of
(
p2 − 1

)
p2(k−2) lines,

p2 points of
(
p2 − 1

)
p2(k−3) lines,

p3 points of
(
p2 − 1

)
p2(k−4) lines,

· · ·
pk−2 points of

(
p2 − 1

)
p2 lines,
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and finally

pk−1 points of p2 − 1 lines.

So, considering that any line of the plane contains
(p+ 1) pk−1 points, the number of points on remaining lines
in same neighbour is that:(

p2 − 1
)
p2(k−2) lines contain (p+ 1) pk−1 − p,(

p2 − 1
)
p2(k−3) lines contain (p+ 1) pk−1 − p2,(

p2 − 1
)
p2(k−4) lines contain (p+ 1) pk−1 − p3,

· · ·(
p2 − 1

)
p2 lines contain (p+ 1) pk−1 − pk−2,

and finally

p2 − 1 lines contain (p+ 1) pk−1 − pk−1.
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