Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30076
On Finite Hjelmslev Planes of Parameters (pk−1, p)

Authors: Atilla Akpinar

Abstract:

In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.

Keywords: Finite Klingenberg plane, finite hyperbolic Klingenberg plane.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1083597

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815

References:


[1] A.Akpinar B.Celik, S.Ciftci. Cross-ratios and 6-figures in some Moufang-Klingenberg planes. Bulletin of the Belgian Math. Soc.-Simon Stevin 15(2008), 49-64.
[2] A.Akpinar, B.Celik, S.Ciftci. On 6-Figures in Finite Klingenberg Planes of parameters (p2k-1,p). Int. J. of Math. and Stat. Sci. 1(2)(2009), 102- 106.
[3] A.Akpinar, B.Celik, S.Ciftci. 4-Transitivity and 6-Figures in Finite Klingenberg Planes of parameters (p2k-1,p). Int. J. of Comp. and Math. Sci. 4(1)(2010), 48-51.
[4] CA.Baker, ND.Lane, JW.Lorimer. A coordinatization for Moufang- Klingenberg Planes. Simon Stevin 65(1991), 3-22.
[5] P.Y.Bacon. An Introduction to Klingenberg planes. Vol. I (1976), Vol. II and III (1979), Florida.
[6] A.Blunck. Projectivities in Moufang-Klingenberg planes. Geom. Dedicata 40(1991), 341-359.
[7] A.Blunck. Cross-ratios in Moufang-Klingenberg Planes. Geom Dedicata 43(1992), 93-107.
[8] B.C┬© elik. A Hyperbolic Characterization of Projective Klingenberg Planes. International Journal of Mathematics Sciences 2(2008), 10-14.
[9] B.Celik, A.Akpinar, S.Ciftci. 4-Transitivity and 6-figures in some Moufang-Klingenberg planes. Monatshefte f¨ur Mathematik 152(2007), 283-294.
[10] DA.Drake, H.Lenz. Finite Klingenberg Planes. Abh. Math. Sem. Univ. Hamburg 44(1975), 70-83.
[11] DA.Drake, H.Lenz. Finite Hjelmslev planes and Klingenberg epimorphisms. Rings and geometry (Istanbul, 1984), 153-231 NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 160(1985), Reidel, Dordrecht.
[12] DA. Drake. On n-uniform Hjelmslev Planes. J. of Comb. Th. 9(1970), 267-288.
[13] LM.Graves. A finite Bolyai-Lobachevsky plane. Amer. Math. Monthly 69(1962), 130-132.
[14] D.Jungnickel. Regular Hjelmslev Planes. J. of Comb. Th. (A) 26(1979), 20-37.
[15] R.Kaya, E.O¨ zcan. On the construction of Bolyai-Lobachevsky planes from projective planes. Rendiconti Del Seminario Matematico Di Brescia 7(1982), 427-434.
[16] E.Kleinfeld. Finite Hjelmslev Planes. Illiois J. Math. 3(1959), 403-407.
[17] W.Klingenberg. Projektive und affine Ebenen mit Nachbarelementen. Math. Z. 60(1954), 384-406.
[18] W.Klingenberg. Projektive Geometrien mit Homomorphismus. Math. Ann. 132(1956), 180-200.
[19] H.L¨uneburg. Affine Hjelmslev-Ebenen mit transitiver Translationsgruppe. Math. Z. 79(1962), 260-288.
[20] R.Sandler. Finite homogeneus Bolyai-Lobachevsky planes. Amer. Math. Monthly 70(1963), 853-854.