
 

 

  
Abstract—Self-Excited Induction Generator (SEIG) builds up 

voltage while it enters in its magnetic saturation region. Due to non-
linear magnetic characteristics, the performance analysis of SEIG 
involves cumbersome mathematical computations. The dependence 
of air-gap voltage on saturated magnetizing reactance can only be 
established at rated frequency by conducting a laboratory test 
commonly known as synchronous run test. But, there is no laboratory 
method to determine saturated magnetizing reactance and air-gap 
voltage of SEIG at varying speed, terminal capacitance and other 
loading conditions. For overall analysis of SEIG, prior information of 
magnetizing reactance, generated frequency and air-gap voltage is 
essentially required. Thus, analytical methods are the only alternative 
to determine these variables. Non-existence of direct mathematical 
relationship of these variables for different terminal conditions has 
forced the researchers to evolve new computational techniques. 
Artificial Neural Networks (ANNs) are very useful for solution of 
such complex problems, as they do not require any a priori 
information about the system. In this paper, an attempt is made to use 
cascaded neural networks to first determine the generated frequency 
and magnetizing reactance with varying terminal conditions and then 
air-gap voltage of SEIG. The results obtained from the ANN model 
are used to evaluate the overall performance of SEIG and are found 
to be in good agreement with experimental results. Hence, it is 
concluded that analysis of SEIG can be carried out effectively using 
ANNs.  
 

Keywords—Self-Excited Induction Generator, Artificial Neural 
Networks, Exciting Capacitance and Saturated magnetizing 
reactance.  

I. INTRODUCTION 
APIDLY depleting rate of conventional energy sources, 
has led the scientists to explore the possibility of utilizing 

non-conventional energy sources. Wind energy, largely 
available in our atmosphere, can be harnessed to generate 
electric power using induction generator.  Brush-less rotor 
construction, absence of separate source for excitation, ease of 
maintenance and reduced unit cost are some of the major 
advantages of induction generator that makes it suitable for 
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power generation particularly in remote areas. Moreover, 
induction machine when connected across capacitor bank and 
driven from wind turbine with varying speed is capable of 
generating power as SEIG. The output frequency and voltage 
of machine are highly dependent on its parameters, speed, 
terminal capacitance and load impedance that limits its 
performance.  

The self excitation phenomena of induction machine is well 
known since 1935, when Basset and Potter  reported that the 
induction machine can be operated as an induction generator 
in isolated mode by using external capacitor [1]. An 
approximate method of analysis of SEIG, by separating the 
real and reactive parts of the circuit has been reported in the 
literature [2].  Series capacitors have been used across the 
stator of SEIG to improve voltage across the load [3]. Barkle 
and Fergusen discussed the analysis of SEIG using modified 
synchronous machine transient theory and static correction to 
avoid over-voltage [4].  

Murthy et al. have suggested an analytical technique, in 
which loop impedance method is used to solve the equivalent 
circuit [5]. On simplification, two polynomials are obtained by 
separating the real and imaginary parts. These polynomials are 
solved for saturated magnetizing reactance and generated 
frequency by Newton–Raphson method. Chan presented two 
solution techniques to predict the performance of SEIG [6]. 
First technique employs a novel transformation to yield 7th 
degree polynomial in terms of per unit frequency, whose 
solution enables the performance evaluation of SEIG. The 
second technique employs symbolic programming approach 
for derivation and solution of the polynomial for generated 
frequency. Various techniques for evaluating frequency and 
magnetizing reactance of SEIG have been reported in the 
literature [7]-[11].  

Many techniques referred above involve higher order 
polynomials in terms of generated frequency and magnetizing 
reactance, whose coefficients are determined by solving the 
impedance network of equivalent circuit of SEIG (shown in 
Fig. 1). The equations having complex elements are very 
lengthy and prone to errors. To overcome these difficulties, 
alternate methods are being developed for the performance 
evaluation of SEIG. Sandhu and Jain developed an equivalent 
circuit of SEIG by replacing the rotor circuit with an active 
voltage source and internal impedance. It makes the SEIG 
analysis simpler and computationally economical [11].  

Artificial Intelligence (AI) techniques, the recent 
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computational tools are gaining importance in the field of 
engineering and are finding increased application in the field 
of power systems, operation, control and protection [12]-[14]. 
Artificial Neural Networks can be used to approximate any 
function to an arbitrary degree of accuracy. In this paper, 
ANNs have been used to model the behavior of the machine.  

II. EQUIVALENT CIRCUIT REPRESENTATIONS FOR STEADY 
STATE ANALYSIS OF SEIG 

The induction generator has no field winding to provide 
necessary excitation unlike in conventional synchronous 
alternators. Thus, excitation is supplied either by power 
system to which it is connected or by shunt capacitors 
connected across its stator. Excitation to the induction 
machine when supplied by the capacitor bank makes the 
operation of machine as self-excited induction generator.  

 

 
Fig. 1 Conventional equivalent circuit of SEIG without active voltage 

source 
 

 
Fig. 2 Per phase equivalent circuit of SEIG with active voltage 

source 
 

 
Fig. 3 Per phase simplified equivalent circuit of SEIG with active 

voltage source 
 

 
The conventional equivalent circuit shown in Fig. 1, (used 

by most of the researchers for performance analysis of SEIG) 
does not corroborate generator operation in the absence of 
active voltage source [5]–[10]. Thus, equivalent circuit shown 

in Fig. 2 with active source is used for performance analysis 
of SEIG [11]. Core loss branch has been omitted due to its 
insignificant effect on the performance of machine.  Lesser 
computational effort is required to evaluate magnetizing 
reactance and frequency using simplified per phase equivalent 
circuit of SEIG as shown in Fig. 3. It saves time and effort 
needed to generate data required for training of ANNs. 

III. SIMPLIFIED EQUIVALENT CIRCUIT OF SEIG WITH ACTIVE 
VOLTAGE SOURCE 

Equivalent circuit of SEIG shown in Fig. 2 is further 
simplified by replacing the parallel combination of load 
impedance ( L L LZ R j a X= + ) and capacitive reactance 
( /cjX a− ) with an equivalent per phase series elements as 
shown in Fig. 3. Expression for equivalent load resistance and 
reactance for lagging power factor load is given below: 

 
2

2 2 2 2  
 ( - )
L c

LL
L L c

R X
R

a R a X X
=

+
 

 
2 2

2 2 2 2
 ( - )

 
 ( - )

L c L c L c
LL

L L c

aR X aX X a X X
X

a R a X X

+
=

+
 

For unity power factor, equivalent load resistance and 
reactance is obtained by substituting 0LX =  in the above 
expressions. Thus net impedance across ‘e and f ’ becomes: 

LL LL LLZ R jX= −     
(- ve sign indicates capacitive effect ) 
 
Combining load and stator impedance we get:    

1L s LLR R R= +    

1L ls LLX aX X= −        and    LL lsX aX>    

Nodal analysis of the circuit of Fig. 3, seen from node ‘c’ 
gives two equations by separating the real and imaginary 
parts. 
Real part: 

1
2 2 2 2 2 2

1 1

 = 0
(   ) ( )

L r

L L r lr

R sR
R X R s a X

−
+ +

                  (1) 

 
Imaginary part: 

2
1

2 2 2 2 2 2
1 1

1 0
( ) (   )

lr L

lr L L m

s a X X
R s a X R X aXr

+ + =
+ +

          (2) 

 
Simplifying equation (1), a quadratic equation in terms of 

slip is obtained as given below: 
2 0As Bs C+ + =                                   (3) 

where  2 2
1lr LA a X R=  
2 2

1 1( )r L LB R R X= − +    
2

1r LC R R=  
Saturated magnetizing reactance mX  is evaluated by 

solving equations (1) and (2).  
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2 2

1 1
2

1 1

( )
( )

r L L
m

lr L r L

R R X
X

s a X R a R X
− +

=
+

                        (4) 

The relation between per unit frequency ‘a’ and speed ‘b’ is 
written as: 

    /(1  )a b s= +          < a b                          (5) 
Unknown values of magnetizing reactance     ‘ mX ’   and 

generated frequency ‘a’ is obtained by solving equations 1 to 
5. Further, computed value of mX  is used to determine the air 
gap voltage ‘ 1E ’ at rated frequency using magnetizing 
characteristics of the induction machine [Appendix-I]. Once 
magnetizing reactance and generated frequency are computed, 
the performance of SEIG can be evaluated for given terminal 
conditions from equivalent circuit given in Fig. 2.  

IV. ARTIFICIAL NEURAL NETWORKS 
An artificial neural network is an information-processing 

paradigm that is inspired by the computational methods used 
by human brain. The human brain is made up of innumerable 
number of nerve cells called neurons. Each neuron acts as 
small processing element. ANNs try to replicate this 
biological neural network. Large numbers of these neurons, 
the elementary processing elements, are highly interconnected 
and work in unison to solve complex problems. ANNs, like 
human being, learn by example. An ANN is configured for a 
specific application, through a learning process. Learning in 
ANNs involves change in interconnection weights between 
different neurons. 

Although, artificial neural network (ANN) is relatively 
recent concept, immense research has been conducted in this 
field.  Application of ANNs has been reported for estimation 
of bus bar voltage in distribution systems and to model the 
behavior of electric machines [12]–[13]. ANNs find a wide 
variety of applications in diverse areas including functional 
approximation, non-linear system identification, and control 
[14]-[16]. In this paper, Multilayer Perceptron (MLP) type 
neural network is used. In MLP, the neurons are arranged in 
different layers. The first layer is called input layer and 
contains neurons equal to number of inputs. Output layer 
contains neurons equal to number of outputs. The number of 
neurons in the hidden layer is chosen so as to get the optimal 
performance of the network.  

Fig. 4 represents the arrangement of neurons and their inter- 

connections in different layers.  Input data is presented to first 
layer and then passed on to hidden layer. After processing this 
data, the output of the hidden layer is passed on to output 
layer of network to yield the desired output. The input to any 
neurons is processed using sigmoid function, 

( ) 1/(1 )xy x e−= + , where ‘x’ is the total input to a neuron. The 
neuron generates output between 0 and 1. Therefore, it is 
necessary to normalize the input-output data. 

V. ANN IMPLEMENTATION OF SEIG 
It is observed that for well-designed induction machine the 

slip varies from two to six percent. For variable speed 
operation of self-excited induction generator, the range of 
speed is chosen to vary from 90% to 110% to keep the 
frequency within acceptable limits. Similarly the range of load 
is taken to vary from no load to full load. For this particular 
case the range of stator and rotor resistance is chosen from 
0.02 to 0.10 pu where as leakage reactance of stator and rotor 
is chosen to vary from 0.04 to 0.15 pu. This will make the 
analysis of SEIG more flexible in terms of range for machine 
parameters. 
 The ANN model of SEIG is trained using Multilayer 
Perceptron (MLP). The cascaded ANN has two stages. Both 
networks have single hidden layer. The input layer of 1st 
neural network has seven neurons accounting for seven inputs 
namely: stator resistance ‘Rs’, rotor resistance ‘Rr’, stator 
leakage reactance ‘Xls’, rotor leakage reactance ‘Xlr’, speed 
‘b’, capacitance ‘C’ and load conductance ‘1/RL’. The output 
layer has two neurons that account for the two outputs 
namely: generated frequency ‘a’ and saturated magnetizing 
reactance ‘Xm’. The hidden layer is chosen to have 10 
neurons, thereby making ANN architecture as 7-10-2.  

Five thousand training data samples are generated for 
training the ANN. The input-output data for training the ANN 
model of SEIG is obtained using analytical technique [11] that 
requires very small computational effort. The training data is 
obtained for the specified range of machine of parameters and 
other terminal condition as mentioned in Table I. Network is 
trained using Levenberg-Marquardt training algorithm with 
initial learning rate 0.01 and sum-square error (SSE) goal is 
set at 0.0075. The SSE goal is achieved in 734 epochs of 
training. The performance of first ANN network is tested with 
input data samples (other than training samples) of machine 
parameters, speed and load selected randomly while the  

TABLE I 
RANGE OF MACHINE PARAMETERS AND TERMINAL VARIABLES FOR TRAINING ANNS 

TRAINING PARAMETERS: TRAINING SAMPLES = 4000, INITIAL LEARNING RATE = 0.001 

Machine  Parameters 
(pu) 

Terminal Variables 
(pu) 

Parameter Range Parameter Range 
stator resistance,  rs 0. 02 – 0.10 speed, b 0.90 – 1.10 
rotor resistance, rr 0.02  – 0.10 capacitance, c 0.60 – 0.80 
stator reactance, xls 0.04  – 0.15 0.01 – 1.00 
rotor reactance, xlr 0.04  – 0.15 

load conductance, 1/rl 
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Fig. 4  Architecture of multilayer perceptron 

 

 
 

Fig. 5 Cascaded artificial neural network 
 

capacitance is varied from 0.60 to 0.80 pu. The output results 
obtained from the first network with randomly selected test 
data are shown in Fig. 6(a) & (b).  

The second network is trained with the input-output data 
(twenty samples) obtained experimentally from the 
experimental machine. The magnetizing characteristics of the 
machine obtained from piece wise linearization of the 
experimental data are given in Appendix-I. Training is given 
to the network having one neuron each in input and output 
layer accounting for saturated magnetizing reactance Xm and 
air gap voltage E1 respectively. The hidden layer has three 
neurons. Thus, ANN architecture for second network is 1-3-1, 
shown in Fig. 5. Second neural network is trained with 
Successive Over-Relaxation Resilient Backpropagation 
(SORPROP) training algorithm [17]. The learning rate is set at 
0.01 for both the layers. The sum square error (0.0025) for 
twenty training samples is obtained in 296 epochs. The 
performance of the second network is tested with the 
validation data (samples other than training samples). 

ANN model of SEIG is implemented on the experimental 
machine [Appendix-I] with resistive loading. The machine 
parameters (four), speed, terminal capacitance and load are 
applied as input to the first network of the ANN model. 
Magnetizing reactance and generated frequency are obtained 
as output of this network. One output variable i.e. magnetizing 
reactance of the first network is applied as input of the second 
network, which yielded per phase air-gap voltage as its output. 
Thus, three outputs namely: magnetizing reactance, generated 
frequency and air-gap voltage are obtained from the cascaded 
ANN model of SEIG which are required for the overall 

analysis of the SEIG.  
The performance analysis of SEIG is carried out using 

outputs of ANN model and solving equivalent circuit given in 
Fig. 2. 

 Slip‘s’ of machine operating as generator is obtained from 
the relation between per unit frequency and speed. 

( / 1)s b a= −  
For resistive load taking XL = 0 we get:  

1   
(  )r lr

s a EIr
R jsaX

=
+

            (6) 

1

1 1
s

L L

aEI
R jX

=
+

             (7) 

  a
m

m

EI
jaX

=               (8) 

/
   

( / )
c

L s
L L c

jX a
I I

R j aX X a
−

=
+ −

          (9) 

   
(  / )

L L
c s

L L c

R j a X
I I

R j aX X a
+

=
+ −

         (10) 

 
  -  (  )a s s lsV E I R j aX= +          (11) 

  
2   3o L LP I R=              (12) 

VI. RESULTS AND DISCUSSIONS  
In this section, the output results obtained from ANN model 

of SEIG are discussed. Randomly selected machine 
parameters and other terminal variables that includes speed, 
resistive load and terminal capacitance, are applied to the first 
stage of ANN model to obtain its output corresponding to 
input variables. To validate the performance of ANN model, 
the results obtained from ANN model are first compared with 
analytical solution by choosing random values of machine 
parameters, speed, load and varying terminal capacitance 
value from 0.60 to 0.80 (8 samples). For three set of randomly 
selected inputs, the mean SEE, minimum mean SSE and 
standard deviations of output results of ANN model from 
analytical solution are recorded in Table II While comparing 
output results of first stage of ANN model with analytical 
solution, it is observed that for first set of inputs, the mean 
SSE for generated frequency and magnetizing reactance are 
recorded to be 2.5361 x 10–7 and 1.4113x10–5 respectively. 
For second and third sets, the values of mean SSE for 
generated frequency are 9.3712x10-7 & 2.5146x10–7, while for 
magnetizing reactance the mean SSE reported is 7.3218x10-5 
& 0.8691x10-5. 

To further investigate the effectiveness of ANN model, 
output of ANN model is also determined with parameters of 
experimental machine, running at rated speed (1500 rpm), 
supplying resistive load (RL = 350 ohms) and varying terminal 
capacitance from 0.60 to 0.80. It is observed that the mean  
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TABLE II 
DETAIL OF DEVIATIONS OF RESULTS OBTAINED FROM ANN MODEL OF SEIG AND ANALYTICAL RESULTS 

Set  
No. 

Randomly Selected Machine 
Parameters (pu) 
 

Randomly Selected Terminal 
Variables  (pu) 
 

Capacitance 
Variation 
 

MSSE    * 
Generated 
Frequency  

MSSE  * 
Magnetizing 
Reactance  

1 Rs  = 0.0535, Rr   = 0.0877  
Xls =  0.0984, Xlr  = 0.0625 
 

 speed  =1.0222  
load conductance  (1/ RL) = 0.1958 

0.60 – 0.80 2.5361x10-7 
 

1.4113x10-5 

2 Rs   = 0.0602,  Rr   = 0.0768 
Xls  = 0.0877,  Xlr  = 0.0738 

speed  = 0.9345 
load conductance (1/ RL) = 0.6931 
 

0.60 – 0.80 9.3712x10-7 7.3218x10-5 

3. Rs  = 0.0474,  Rr  = 0.0432 
Xls  = 0.0779,  Xlr =  0.0993 

speed  = 1.0879 
load conductance (1/ RL) = 0.8916 
 

0.60 – 0.80 2.5146x10-7 8.6910x10-6 

generated frequency:   
 
minimum MSSE              = 2.5146x10-7 
maximum MSSE             = 9.3712x10-7 
mean sum-squired error   = 4.8073x10-7 
standard deviation           = 3.9525x10-7 

magnetizing reactance: 
 
minimum MSSE              = 8.6910x10-6 
maximum MSSE             = 7.3218x10-5 

mean sum-squired error  = 3.2007x10-5 
standard deviation          = 3.5792x10-5 
 

*Mean SSE for 10 samples of input variables. 
 
 

TABLE III 
DETAIL OF DEVIATIONS OF RESULTS WITH EXPERIMENTAL MACHINE PARAMETERS, SPEED, LOAD AND VARYING CAPACITANCE 

Machine parameters and terminal conditions: 
 
stator resistance, Rs    = 0. 0601   pu                    speed                          = 1500 Rpm (1.0 pu) 
stator reactance, Xls    = 0. 0978   pu                    load resistance            = 350 ohms (3.67 pu) 
rotor resistance, Rr     = 0. 0437   pu                     no. of  samples            = 8 
rotor reactance, Xlr      = 0. 0978   pu 
Output Variables Sum–squared Error 

(SSE) 
Minimum SSE Maximum 

SSE 
Mean SSE Standard 

Deviation 
magnetizing 
reactance 

8.5683x10-5 1.6799x10-7 4.0761x10 -5 1.0710x10-5 1.3074x10-5 

generated 
frequency 

9.8113x10-7 5.6461x10-9 3.2396x10-7 1.2264x10-7 1.1330x10-7 

air-gap voltage 1.0069x10-5 4.5918x10-8 4.4292x10-6 1.2586x10-6 

 
1.3987x10-6 

 
 

  

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 (b) Variation of air-gap voltage with capacitance 

 
Fig. 6 (a) Variation of magnetizing reactance &                  

generated frequency with capacitance 
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SSE for magnetizing reactance and generated frequency are. 
1.0710 x 10-5 & 1.2264 x10 –7 respectively where as standard 
deviation for these two variables are recorded to be 1.3074 x 
10 –5 & 1.1330 x 10-7. The deviations of ANN results from the 
analytical results are quite insignificant as given in Table III. 
Thus, it is established that result of ANN model are consistent 
with conventional techniques. 

Output of the first stage of ANN is applied to the input of 
the second stage of network to give air-gap voltage as its 
output. The input of the second stage is magnetizing 
reactance. ANN model of SEIG is tested with parameters of 
experimental machine and a set of terminal conditions given 
in Table III. The output results obtained from ANN model are 
compared with analytical solution. It is observed that mean 
SSE and standard deviation for air gap voltage is recorded to 
be 1.2586x10-6 & 1.3987x10-6 respectively. The values of 
deviations are very small and insignificant, thus indicate that 
the results are quite accurate and consistent. The variation of 
magnetizing reactance, frequency and air-gap voltage with 
capacitance are plotted in Fig. 6 (a) & (b) for parameters of 
experimental machine, rated speed, (1500 rpm) and resistive 
load (RL= 350 ohms) with variable capacitance from 0.60 pu 
to 0.80 pu.. It is observed from the results that variation of 
terminal capacitance does not affect the generated frequency, 
but air-gap voltage increases with increase in terminal 
capacitance 
 

 
Fig. 7 Variation of terminal voltage with capacitance 

 
 

 
Fig. 8 Variation of output frequency with capacitance 

 

 
Fig. 9 Variation of load current with capacitance 

 

 
Fig. 10 Variation of stator current with capacitance 

 

 
Fig. 11 Variation of output power with capacitance 

 

VII. EXPERIMENTAL VERIFICATION OF PERFORMANCE OF 
SEIG 

From the closeness of output results with the analytical 
solution, it is concluded that ANN model of SEIG can be used 
for evaluating the frequency, magnetizing reactance and air 
gap voltage effectively. Further, the output of the ANN model 
can be used to determine the overall performance of the SEIG 
by solving equivalent circuit of Fig. 2. Using the results of 
ANN model, terminal voltage, generated frequency, load 
current, stator current and output power of SEIG is evaluated 
at rated speed, (1500 rpm), resistive load (RL= 350 ohms) with 
variable capacitance from 0.60 pu to 0.80 pu. The results 
obtained are compared with experimental data obtained from 
the machine with same terminal conditions. From the Figures 
7 to 11, it is clear that ANN results are in close agreement 
with experimental results. 

VIII. CONCLUSION 
Artificial Neural Networks have been implemented to 

analyze the steady state behavior of SEIG with varying 
terminal capacitance at rated speed with constant resistive 
load. It is observed from the results that variation of terminal 
capacitance does not affect the generated frequency but air-
gap voltage of SEIG increases with increase in terminal 
capacitance. Cascaded ANNs are used for the analysis. It is 
also observed that though neural network is trained with 
randomly chosen samples but it is fully capable of computing 
the three un-known performance variables i.e. magnetizing 
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reactance, generated frequency and air-gap voltage for any of 
the randomly chosen combinations of machine parameters, 
speed, capacitance and load. The SEIG analysis obtained 
using results of ANN model are compared with that obtained 
experimentally and are found to be in close agreement.. The 
results thus, obtained confirm the validity of the ANN model. 
Therefore, it is concluded that SEIG analysis can be carried 
out effectively using ANNs.  

APPENDIX -I 

Nomenclature  

sR , lsX  = per phase stator resistance and reactance. 

rR , lrX  = per phase rotor resistance and  reactance referred to 
stator. 

LR , LX  = per phase load resistance and inductive reactance. 

cX     =     per phase capacitive reactance. 

mX   =     per phase saturated magnetizing   reactance 
a      =      ratio of generated frequency to the rated frequency. 
b    =     ratio of actual rotor speed to the synchronous speed 

corresponding to rated frequency 
s     =      slip of machine.  

1E   =      per phase air gap voltage at rated frequency.  

aE  =       aE1, per phase air gap voltage at generated 
frequency 

(1 )aE s+ = per phase air gap voltage at generated frequency                       
corresponding to mechanical power transformed to 
electrical power through rotor. 

 
All quantities referred above are per unit values. 

 
a)  Machine Specifications: 

  
    5.0HP =        4P =  

    415V Voltsbase =     4.33 I Ampbase =  

   P V Ibase base base=        1500  N RPMbase =        

    95.84 Zbase = Ω     50  F Hzbase =   

  33.21 C Fbase μ=  

 
b)  Machine parameters in ohms: 

 
    5.76 Rs = Ω     4.19  Rr = Ω   

   9.37  Xls = Ω       9.37 Xlr = Ω  

 
c)  Magnetizing characteristics of machine: 

          
    12.6930 , 1.3818 - 0.2117for X E Xm m< =  
 12.8386 & 2.6930, = 2.1697 0.5057for X X E Xm m m< >= −  

   12.9716 & 2.8386, 3.8732 1.1057for X X E Xm m m< >= = −  

    1> 2.9716, = 0for X Em  
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