Search results for: pressure drop
904 Performance of QoS Parameters in MANET Application Traffics in Large Scale Scenarios
Authors: Vahid Ayatollahi Tafti, Abolfazl Gandomi
Abstract:
A mobile Ad-hoc network consists of wireless nodes communicating without the need for a centralized administration. A user can move anytime in an ad hoc scenario and, as a result, such a network needs to have routing protocols which can adopt dynamically changing topology. To accomplish this, a number of ad hoc routing protocols have been proposed and implemented, which include DSR, OLSR and AODV. This paper presents a study on the QoS parameters for MANET application traffics in large-scale scenarios with 50 and 120 nodes. The application traffics analyzed in this study is File Transfer Protocol (FTP). In large scale networks (120 nodes) OLSR shows better performance and in smaller scale networks (50 nodes)AODV shows less packet drop rate and OLSR shows better throughput.Keywords: aodv, dsr, manet , olsr , qos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167903 Local Steerable Pyramid Binary Pattern Sequence LSPBPS for Face Recognition Method
Authors: Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Mohammed Rziza, Driss Aboutajdine
Abstract:
In this paper the problem of face recognition under variable illumination conditions is considered. Most of the works in the literature exhibit good performance under strictly controlled acquisition conditions, but the performance drastically drop when changes in pose and illumination occur, so that recently number of approaches have been proposed to deal with such variability. The aim of this work is to introduce an efficient local appearance feature extraction method based steerable pyramid (SP) for face recognition. Local information is extracted from SP sub-bands using LBP(Local binary Pattern). The underlying statistics allow us to reduce the required amount of data to be stored. The experiments carried out on different face databases confirm the effectiveness of the proposed approach.
Keywords: Face recognition (FR), Steerable pyramid (SP), localBinary Pattern (LBP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183902 Verification of K-ω SST Turbulence Model for Supersonic Internal Flows
Abstract:
In this work, we try to find the best setting of Computational Fluid Dynamic solver available for the problems in the field of supersonic internal flows. We used the supersonic air-toair ejector to represent the typical problem in focus. There are multiple oblique shock waves, shear layers, boundary layers and normal shock interacting in the supersonic ejector making this device typical in field of supersonic inner flows. Modeling of shocks in general is demanding on the physical model of fluid, because ordinary conservation equation does not conform to real conditions in the near-shock region as found in many works. From these reasons, we decided to take special care about solver setting in this article by means of experimental approach of color Schlieren pictures and pneumatic measurement. Fast pressure transducers were used to measure unsteady static pressure in regimes with normal shock in mixing chamber. Physical behavior of ejector in several regimes is discussed. Best choice of eddy-viscosity setting is discussed on the theoretical base. The final verification of the k-ω SST is done on the base of comparison between experiment and numerical results.Keywords: CFD simulations, color Schlieren, k-ω SST, supersonic flows, shock waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6471901 A Physics-Based Model for Fast Recovery Diodes with Lifetime Control and Emitter Efficiency Reduction
Authors: Chengjie Wang, Li Yin, Chuanmin Wang
Abstract:
This paper presents a physics-based model for the high-voltage fast recovery diodes. The model provides a good trade-off between reverse recovery time and forward voltage drop realized through a combination of lifetime control and emitter efficiency reduction techniques. The minority carrier lifetime can be extracted from the reverse recovery transient response and forward characteristics. This paper also shows that decreasing the amount of the excess carriers stored in the drift region will result in softer characteristics which can be achieved using a lower doping level. The developed model is verified by experiment and the measurement data agrees well with the model.Keywords: Emitter efficiency, lifetime control, P-i-N diode, physics-based model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3804900 Sustainability: An Ethical Approach Towards Project Business Success
Authors: G. S. Dangayach
Abstract:
For any country the project management has been a vital part for its development. The highly competitive business world has created tremendous pressure on the project managers to achieve success. The pressure is derived from survival and profit building in business organizations which compels the project managers to pursue unethical practices. As a result unethical activities in business projects can be found easily where situations or issues arise due to dubious business practice, high corruption, or absolute violation of the law. The recent spur on Commonwealth games to be organized in New Delhi indicates towards the same. It has been seen that the project managers mainly focus on cost, time, and quality rather than social impact and long term effects of the project. Surprisingly the literature as well as the practitioner-s perspective also does not identify the role of ethics in project success. This paper identifies ethics as the fourth most important dimension in the project based organizations. The paper predicts that the approach of considering ethics will result in sustainability of the project. It will increase satisfaction and loyalty of the customers as well as create harmony, trust, brotherhood, values and morality among the team members. This paper is conceptual in nature as inadequate literature exists linking the project success with an ethical approach.Keywords: Ethics, Loyalty, Morality, Project success
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767899 Reliability Analysis of P-I Diagram Formula for RC Column Subjected to Blast Load
Authors: Masoud Abedini, Azrul A. Mutalib, Shahrizan Baharom, Hong Hao
Abstract:
This study was conducted published to investigate there liability of the equation pressure-impulse (PI) reinforced concrete column inprevious studies. Equation involves three different levels of damage criteria known as D =0. 2, D =0. 5 and D =0. 8.The damage criteria known as a minor when 0-0.2, 0.2-0.5is known as moderate damage, high damage known as 0.5-0.8, and 0.8-1 of the structure is considered a failure. In this study, two types of reliability analyzes conducted. First, using pressure-impulse equation with different parameters. The parameters involved are the concrete strength, depth, width, and height column, the ratio of longitudinal reinforcement and transverse reinforcement ratio. In the first analysis of the reliability of this new equation is derived to improve the previous equations. The second reliability analysis involves three types of columns used to derive the PI curve diagram using the derived equation to compare with the equation derived from other researchers and graph minimum standoff versus weapon yield Federal Emergency Management Agency (FEMA). The results showed that the derived equation is more accurate with FEMA standards than previous researchers.
Keywords: Blast load, RC column, P-I curve, Analytical formulae, Standard FEMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911898 Investigation on the Stability of Rock Slopes Subjected to Tension Cracks via Limit Analysis
Abstract:
Based on the kinematic approach of limit analysis, a full set of upper bound solutions for the stability of homogeneous rock slopes subjected to tension cracks are obtained. The generalized Hoek-Brown failure criterion is employed to describe the non-linear strength envelope of rocks. In this paper, critical failure mechanisms are determined for cracks of known depth but unspecified location, cracks of known location but unknown depth, and cracks of unspecified location and depth. It is shown that there is a nearly up to 50% drop in terms of the stability factors for the rock slopes intersected by a tension crack compared with intact ones. Tables and charts of solutions in dimensionless forms are presented for ease of use by practitioners.
Keywords: Hoek-Brown failure criterion, limit analysis, rock slope, tension cracks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451897 From the Fields to the Concrete: Urban Development of Campo Mourão
Authors: Caio Fialho
Abstract:
The automobile incentive policy in Brazil since the 1950s creates several problems in its cities, more visible in large centers such as São Paulo or Rio de Janeiro, but also strongly present in smaller cities, resulting in an increase in social and spatial inequality, together with a drop in the quality of life. The analyzed city, Campo Mourão, reflects these policies, a city that is initially planned to be compact and walkable, took other directions and currently suffers from urban mobility and social inequality in this urban environment, despite being a medium-sized city in Brazil. The research aims to understand and diagnose how these policies shaped the city and what are the results in Brazilian`s inland cities. Based on historical, bibliographical and field research in the city, the result is a diagnosis of the problem faced and how it can be reversed, in search of social equality and better quality of life.
Keywords: Urban mobility, quality of life, social equality, substantiable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568896 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend
Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes
Abstract:
This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.Keywords: Diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314895 Fabrication and Characterization of Al/Methyl Orange/n-Si Heterojunction Diode
Authors: Muhammad Tahir, Muhammad H. Sayyad, Dil N. Khan, Fazal Wahab
Abstract:
Herein, the organic semiconductor methyl orange (MO), is investigated for the first time for its electronic applications. For this purpose, Al/MO/n-Si heterojunction is fabricated through economical cheap and simple “drop casting” technique. The currentvoltage (I-V) measurements of the device are made at room temperature under dark conditions. The I-V characteristics of Al/MO/n-Si junction exhibits asymmetrical and rectifying behavior that confirms the formation of diode. The diode parameters such as rectification ratio (RR), turn on voltage (Vturn on), reverse saturation current (I0), ideality factor (n), barrier height ( b f ), series resistance (Rs) and shunt resistance (Rsh) are determined from I-V curves using Schottky equations. These values of these parameters are also extracted and verified by applying Cheung’s functions. The conduction mechanisms are explained from the forward bias I-V characteristics using the power law.Keywords: Electrical properties, Organic/inorganic heterojunction diode, Methyl Orange, Cheungs Functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928894 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields
Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-xin Wang
Abstract:
The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.
Keywords: Supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings (FW-H) equations, nozzle size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617893 Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V
Authors: Esther T. Akinlabi, Rasheedat M. Mahamood, Mukul Shukla, Sisa. Pityana
Abstract:
The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will dropKeywords: Additive Manufacturing, Laser Metal Deposition Process, Material efficiency, Processing Parameter, Titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345892 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation
Authors: O. Maklouf, Ahmed Abdulla
Abstract:
A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers have looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.
Keywords: GPS, ParIMU, INS, Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865891 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor
Authors: Damian Ramajo, Santiago Corzo, Norberto Nigro
Abstract:
A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.Keywords: CFD, PHWR, Thermo-hydraulic, Two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709890 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.
Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 398889 Modeling of Nitrogen Solubility in Stainless Steel
Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky
Abstract:
Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacements of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600 oC: [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.
Keywords: Solubility, nitrogen, stainless steel, Schaeffler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60888 The Onset of Ironing during Casing Expansion
Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers
Abstract:
Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.
Keywords: Casing expansion, cement, formation, metal forming, plasticity, well design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778887 Optimization of Turbocharged Diesel Engines
Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz
Abstract:
The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC (Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP (Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital® madules in concepts NREC® respectively.
Keywords: Turbocharger, Wastegate, diesel engine, CONCEPT NREC programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3420886 Exploiting Silicon-on-Insulator Microring Resonator Bistability Behavior for All Optical Set-Reset Flip-Flop
Authors: P. Nadimi, D. D. Caviglia, E. Di Zitti
Abstract:
We propose an all optical flip-flop circuit composedof two Silicon-on-insulator microring resonators coupled to straightwaveguides by exploiting the optical bistability behavior due to thenonlinear Kerr effect. We used the transfer matrix analysis toinvestigate continuous wave propagation through microrings, as wellwe considered the nonlinear switching characteristics of an opticaldevice using a double-coupler silicon ring resonator in presence ofthe Kerr nonlinearity, thus obtaining the bistability behavior of theoutput port, the drop port and also inside the silicon microringresonator. It is shown that the bistability behavior depends on thecontrol of the input wavelength.KeywordsAll optical flip-flops, Kerr effect, microringresonator, optical bistability.
Keywords: All optical flip-flops, Kerr effect, microring resonator, optical bistability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142885 A Thermodynamic Study of Parameters That Affect the Nitration of Glycerol with Nitric Acid
Authors: Erna Astuti, Supranto, Rochmadi, Agus Prasetya
Abstract:
Biodiesel production from vegetable oil will produce glycerol as by-product about 10% of the biodiesel production. The amount of glycerol that was produced needed alternative way to handling immediately so as to not become the waste that polluted environment. One of the solutions was to process glycerol to polyglycidyl nitrate (PGN). PGN is synthesized from glycerol by three-step reactions i.e. nitration of glycerol, cyclization of 13- dinitroglycerine and polymerization of glycosyl nitrate. Optimum condition of nitration of glycerol with nitric acid has not been known. Thermodynamic feasibility should be done before run experiments in the laboratory. The aim of this study was to determine the parameters those affect nitration of glycerol and nitric acid and chose the operation condition. Many parameters were simulated to verify its possibility to experiment under conditions which would get the highest conversion of 1, 3-dinitroglycerine and which was the ideal condition to get it. The parameters that need to be studied to obtain the highest conversion of 1, 3-dinitroglycerine were mol ratio of nitric acid/glycerol, reaction temperature, mol ratio of glycerol/dichloromethane and pressure. The highest conversion was obtained in the range of mol ratio of nitric acid /glycerol between 2/1 – 5/1, reaction temperature of 5-25oC and pressure of 1 atm. The parameters that need to be studied further to obtain the highest conversion of 1.3 DNG are mol ratio of nitric acid/glycerol and reaction temperature.Keywords: Nitration, glycerol, thermodynamic, optimum condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218884 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry
Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim
Abstract:
An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.
Keywords: Steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594883 Drop Impact on a Vibrated, Heated Surface: Towards a Potential New Way of Elaborating Nuclear Fuel from Gel Microspheres
Authors: Méryl Brothier, Dominique Moulinier, Christophe Bertaux
Abstract:
The gel-supported precipitation (GSP) process can be used to make spherical particles (spherules) of nuclear fuel, particularly for very high temperature reactors (VHTR) and even for implementing the process called SPHEREPAC. In these different cases, the main characteristics are the sphericity of the particles to be manufactured and the control over their grain size. Nonetheless, depending on the specifications defined for these spherical particles, the GSP process has intrinsic limits, particularly when fabricating very small particles. This paper describes the use of secondary fragmentation (water, water/PVA and uranyl nitrate) on solid surfaces under varying temperature and vibration conditions to assess the relevance of using this new technique to manufacture very small spherical particles by means of a modified GSP process. The fragmentation mechanisms are monitored and analysed, before the trends for its subsequent optimised application are described.Keywords: Microsphere elaboration, nuclear fuel, droplet impact , gel-supported precipitation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589882 Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration
Authors: Diqiao S. Wei, M. Hossain, Zaid S. Saleh
Abstract:
Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.Keywords: Fouling, membrane, polyphenols, ultrafiltration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3386881 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir
Authors: H. Shafaattalab Dehghani, H. R. Zarei
Abstract:
The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.
Keywords: Bell spring, karst, Daryan Dam, submerged.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218880 Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)
Authors: Behrouz Mosayebi Dehkordi
Abstract:
Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.
Keywords: Dehydration, Mushroom, Optimization, Osmotic, Response Surface Methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036879 Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)
Authors: Behrouz Mosayebi Dehkordi
Abstract:
Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.
Keywords: Dehydration, mushroom, optimization, osmotic, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462878 Study on the Effect of Bolt Locking Method on the Deformation of Bipolar Plate in PEMFC
Authors: Tao Chen, ShiHua Liu, JiWei Zhang
Abstract:
Assembly of the proton exchange membrane fuel cells (PEMFC) has a very important influence on its performance and efficiency. The various components of PEMFC stack are usually locked and fixed by bolts. Locking bolt will cause the deformation of the bipolar plate and the other components, which will affect directly the deformation degree of the integral parts of the PEMFC as well as the performance of PEMFC. This paper focuses on the object of three-cell stack of PEMFC. Finite element simulation is used to investigate the deformation of bipolar plate caused by quantity and layout of bolts, bolt locking pressure, and bolt locking sequence, etc. Finally, we made a conclusion that the optimal combination packaging scheme was adopted to assemble the fuel cell stack. The scheme was in use of 3.8 MPa locking pressure imposed on the fuel cell stack, type Ⅱ of four locking bolts and longitudinal locking method. The scheme was obtained by comparatively analyzing the overall displacement contour of PEMFC stack, absolute displacement curve of bipolar plate along the given three paths in the Z direction and the polarization curve of fuel cell. The research results are helpful for the fuel cell stack assembly.
Keywords: Bipolar plate, deformation, finite element simulation, fuel cell, locking bolt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833877 Design and Characteristics of New Test Facility for Flat Plate Boundary Layer Research
Authors: N. Patten, T. M. Young, P. Griffin
Abstract:
Preliminary results for a new flat plate test facility are presented here in the form of Computational Fluid Dynamics (CFD), flow visualisation, pressure measurements and thermal anemometry. The results from the CFD and flow visualisation show the effectiveness of the plate design, with the trailing edge flap anchoring the stagnation point on the working surface and reducing the extent of the leading edge separation. The flow visualization technique demonstrates the two-dimensionality of the flow in the location where the thermal anemometry measurements are obtained. Measurements of the boundary layer mean velocity profiles compare favourably with the Blasius solution, thereby allowing for comparison of future measurements with the wealth of data available on zero pressure gradient Blasius flows. Results for the skin friction, boundary layer thickness, frictional velocity and wall shear stress are shown to agree well with the Blasius theory, with a maximum experimental deviation from theory of 5%. Two turbulence generating grids have been designed and characterized and it is shown that the turbulence decay downstream of both grids agrees with established correlations. It is also demonstrated that there is little dependence of turbulence on the freestream velocity.Keywords: CFD, Flow Visualisation, Thermal Anemometry, Turbulence Grids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772876 Decentralized Handoff for Microcellular Mobile Communication System using Fuzzy Logic
Authors: G. M. Mir, N. A. Shah, Moinuddin
Abstract:
Efficient handoff algorithms are a cost-effective way of enhancing the capacity and QoS of cellular system. The higher value of hysteresis effectively prevents unnecessary handoffs but causes undesired cell dragging. This undesired cell dragging causes interference or could lead to dropped calls in microcellular environment. The problems are further exacerbated by the corner effect phenomenon which causes the signal level to drop by 20-30 dB in 10-20 meters. Thus, in order to maintain reliable communication in a microcellular system new and better handoff algorithms must be developed. A fuzzy based handoff algorithm is proposed in this paper as a solution to this problem. Handoff on the basis of ratio of slopes of normal signal loss to the actual signal loss is presented. The fuzzy based solution is supported by comparing its results with the results obtained in analytical solution.Keywords: Slope ratio, handoff, corner effect, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513875 Ultrasonic Investigation of Molecular Interaction in Binary Liquid Mixture of Polyethylene Glycol with Ethanol
Authors: S. Grace Sahaya Sheba, R. Omegala Priakumari
Abstract:
Polyethylene glycol (PEG) is a condensation polymer of ethylene oxide and water. It is soluble in water and in many organic solvents. PEG is used to make emulsifying agents, detergents, soaps, plasticizers, ointments etc. Ethanol (C2H5OH) also known as ethyl alcohol is a well-known organic compound and has wide applications in chemical industry as it is used as a solvent for paint, varnish, in preserving biological specimens, used as a fuel mixed with petrol etc. Though their chemical and physical properties are already studied, still because of their uses in day to day life the authors thought it is better to study some more of their physical properties like ultrasonic velocity and hence adiabatic compressibility, free length, etc. A detailed study of such properties and some excess parameters like excess adiabatic compressibility, excess free volume and few more in the liquid mixtures of these two compounds with PEG as a solute and Ethanol as a solvent at various mole fractions may throw some light on deeper understanding of molecular interaction between the solute and the solvent supported by NMR, IR etc. Hence the present research work is on ultrasonics/allied studies on these two liquid mixtures. Ultrasonic velocity (U), density (ρ) and viscosity (η) at room temperature and at different mole fraction from 0 to 0.055 of ethanol in PEG have been experimentally carried out by the authors. Acoustical parameters such as adiabatic compressibility (β), free volume (Vf), acoustic impedance (Z), internal pressure (πi), intermolecular free length (Lf) and relaxation time (τ) were calculated from the experimental data. We have calculated excess parameters like excess adiabatic compressibility (βE), excess internal pressure (πiE) free length (LfE) and excess acoustic impedance (ZE) etc for these two chosen liquid mixtures. The excess compressibility is positive and maximum around a mole fraction 0.007 and excess internal pressure is negative and maximum at the same mole fraction and longer free length. The results are analyzed and it may be concluded that the molecular interactions between the solute and the solvent is not strong and it may be weak. Appropriate graphs are drawn.
Keywords: Adiabatic Compressibility, Binary mixture, Induce dipole, Polarizability, Ultrasonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2782