WASET
	%0 Journal Article
	%A Diqiao S. Wei and  M. Hossain and  Zaid S. Saleh
	%D 2007
	%J International Journal of Nutrition and Food Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 10, 2007
	%T Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration
	%U https://publications.waset.org/pdf/14293
	%V 10
	%X Polyphenolics and sugar are the components of many
fruit juices. In this work, the performance of ultra-filtration (UF) for
separating phenolic compounds from apple juice was studied by
performing batch experiments in a membrane module with an area of
0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa
MWCO. The effects of various operating conditions: transmembrane
pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5),
feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow
rate (1, 1.5, 1.8 L/min) on the performance were determined.
The optimum operating conditions were: transmembrane pressure
4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10
Brix (apple juice). After performing ultrafiltration under these
conditions, the concentration of polyphenolics in retentate was
increased by a factor of up to 2.7 with up to 70% recovered in the
permeate and with approx. 20% of the sugar in that stream..
Application of diafiltration (addition of water to the concentrate) can
regain the flux by a factor of 1.5, which has been decreased due to
fouling. The material balance performed on the process has shown
the amount of deposits on the membrane and the extent of fouling in
the system. In conclusion, ultrafiltration has been demonstrated as a
potential technology to separate the polyphenolics and sugars from
their mixtures and can be applied to remove sugars from fruit juice.
	%P 115 - 122