WASET
	%0 Journal Article
	%A Damian Ramajo and  Santiago Corzo and  Norberto Nigro
	%D 2015
	%J International Journal of Physical and Mathematical Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 107, 2015
	%T A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor
	%U https://publications.waset.org/pdf/10002904
	%V 107
	%X A Multi-dimensional computational fluid dynamics
(CFD) two-phase model was developed with the aim to simulate
the in-core coolant circuit of a pressurized heavy water reactor
(PHWR) of a commercial nuclear power plant (NPP). Due to the
fact that this PHWR is a Reactor Pressure Vessel type (RPV),
three-dimensional (3D) detailed modelling of the large reservoirs of
the RPV (the upper and lower plenums and the downcomer) were
coupled with an in-house finite volume one-dimensional (1D) code
in order to model the 451 coolant channels housing the nuclear fuel.
Regarding the 1D code, suitable empirical correlations for taking into
account the in-channel distributed (friction losses) and concentrated
(spacer grids, inlet and outlet throttles) pressure losses were used.
A local power distribution at each one of the coolant channels
was also taken into account. The heat transfer between the coolant
and the surrounding moderator was accurately calculated using a
two-dimensional theoretical model. The implementation of subcooled
boiling and condensation models in the 1D code along with the use
of functions for representing the thermal and dynamic properties of
the coolant and moderator (heavy water) allow to have estimations
of the in-core steam generation under nominal flow conditions for a
generic fission power distribution. The in-core mass flow distribution
results for steady state nominal conditions are in agreement with the
expected from design, thus getting a first assessment of the coupled
1/3D model. Results for nominal condition were compared with
those obtained with a previous 1/3D single-phase model getting more
realistic temperature patterns, also allowing visualize low values of
void fraction inside the upper plenum. It must be mentioned that the
current results were obtained by imposing prescribed fission power
functions from literature. Therefore, results are showed with the aim
of point out the potentiality of the developed model.
	%P 670 - 675