Search results for: acid pump truck (APT) Tier4 Repower
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 940

Search results for: acid pump truck (APT) Tier4 Repower

370 Study on Extraction of Ceric Oxide from Monazite Concentrate

Authors: Lwin Thuzar Shwe, Nwe Nwe Soe, Kay Thi Lwin

Abstract:

Cerium oxide is to be recovered from monazite, which contains about 27.35% CeO2. The principal objective of this study is to be able to extract cerium oxide from monazite of Moemeik Myitsone Area. The treatment of monazite in this study involves three main steps; extraction of cerium hydroxide from monazite, solvent extraction of cerium hydroxide, and precipitation with oxalic acid and calcination of cerium oxalate.

Keywords: Calcination, Digestion, Precipitation, SolventExtraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
369 A Brief Review on Recent Trends in Alternative Sources of Energy

Authors: Divya S., Jibin Joseph

Abstract:

Alternative energy is any energy source that is an alternative to fossil fuel. These alternatives are intended to address concerns about such fossil fuels. Today, because of the variety of energy choices and differing goals of their advocates, defining some energy types as "alternative" is highly controversial. Most of the recent and existing alternative sources of energy are discussed below

Keywords: Athra Quinone Disulphonic Acid (AQDS), Renewable Methanol (RM), Solid Oxide Fuel Cell (SOFC), Maximum Power Point Tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
368 Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose

Authors: J. Chumee, D. Seeburin

Abstract:

The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS).

Keywords: Pomelo peel, Carboxymethyl cellulose, Cellulose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4305
367 The Effect of Parameters on Productions of NiO/Al2O3/B2O3/SiO2 Composite Nanofibers by Using Sol-Gel Processing and Electrospinning Technique

Authors: Fatih Sevim, Emel Sevimli, Fatih Demir, Turan Çalban

Abstract:

Nanofibers of PVA /nickel nitrate/silica/alumina izopropoxide/boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of NiO/Al2O3/B2O3/SiO2 composite with diameters about 500 nm could be successfully obtained. The fibers were characterized by XRD and SEM analyses.

Keywords: Nanofibers, ceramics composite, sol-gel processing, electrospinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
366 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination

Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz

Abstract:

Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.

Keywords: Crystalline TiO2, sonochemical mechanism, sol-gel reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
365 Relationship of Reaction Temperature on Phosphate Oligomers Reactivity to Properties of Soy-Polyurethane

Authors: Flora Elvistia Firdaus

Abstract:

Polyurethane foam (PUF) were prepared by reacting polyols synthesized from soy-oil into mixture of 2,4- Toluene diisocyanate (TDI) with 4,4--Methylene Diamine Isocyanate (MDI) with ratio of 70:30. The polyols obtained via esterification reaction were categorize into different temperature of reaction and by used of varied concentration of phosphoric acid catalyst. The purpose of catalysts is to shifting selectivity to a desired and value added of product. The effect of stoichiometric balance (molar ratio of epoxide/ethylene glycol) to the concentration of the catalyst on the final properties was evaluated.

Keywords: temperature, phosphate, soy polyurethane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
364 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: Biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
363 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: Air cooling system, refrigeration, thermal ejector, thermal compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
362 Tomato Fruit Quality of Different Cultivars Growth in Lithuania

Authors: A. Radzevičius, P. Viškelis, J. Viškelis, R. Bobinaitė, R. Karklelienė, D. Juškevičienė

Abstract:

Two cultivars ('Rutuliai', 'Saint Perrie') and five hybrids ('Tolstoi', 'Brooklyn', 'Tocayo', 'Benito', 'Tourist') of edible tomato (Lycopersicon esculentum Mill.) were investigated at the LRCAF Institute of Horticulture. The following fruit quality parameters were evaluated: the amount of lycopene, β-carotene, ascorbic acid, total and inverted sugar, sucrose, dry matter soluble solids in fresh tomato matter, also were determined fruit skin and flesh firmness, color indexes (CIE L*a*b*) and calculated hue angle (h°) with chroma (C).

Keywords: Carotenoids, cultivar, nutrition, tomato.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857
361 Modeling of Co-Cu Elution From Clinoptilolite using Neural Network

Authors: John Kabuba, Antoine Mulaba-Bafubiandi

Abstract:

The elution process for the removal of Co and Cu from clinoptilolite as an ion-exchanger was investigated using three parameters: bed volume, pH and contact time. The present paper study has shown quantitatively that acid concentration has a significant effect on the elution process. The favorable eluant concentration was found to be 2 M HCl and 2 M H2SO4, respectively. The multi-component equilibrium relationship in the process can be very complex, and perhaps ill-defined. In such circumstances, it is preferable to use a non-parametric technique such as Neural Network to represent such an equilibrium relationship.

Keywords: Clinoptilolite, elution, modeling, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
360 Detecting Community Structure in Amino Acid Interaction Networks

Authors: Omar GACI, Stefan BALEV, Antoine DUTOT

Abstract:

In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we observe that according to their structural roles, the nodes interact differently. By leading a community structure detection, we confirm this specific behavior and describe thecommunities composition to finally propose a new approach to fold a protein interaction network.

Keywords: interaction network, protein structure, community structure detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
359 Study on Extraction of Lanthanum Oxide from Monazite Concentrate

Authors: Nwe Nwe Soe, Lwin Thuzar Shwe, Kay Thi Lwin

Abstract:

Lanthanum oxide is to be recovered from monazite, which contains about 13.44% lanthanum oxide. The principal objective of this study is to be able to extract lanthanum oxide from monazite of Moemeik Myitsone Area. The treatment of monazite in this study involves three main steps; extraction of lanthanum hydroxide from monazite by using caustic soda, digestion with nitric acid and precipitation with ammonium hydroxide and calcination of lanthanum oxalate to lanthanum oxide.

Keywords: Calcination, Digestion, Precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4034
358 Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France

Authors: Gashin Shahsavari, Gilles Arnaud-Fassetta, Roberto Bertilotti, Alberto Campisano, Fabien Riou

Abstract:

Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understand its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grainsize) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.

Keywords: Bed-material load evolution, combined sewer systems, flushing efficiency, sediment transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
357 Synthesis and Antimicrobial Profile of Newer Schiff Bases and Thiazolidinone Derivatives

Authors: N. K. Fuloria, S. Fuloria, R. Gupta

Abstract:

Esterification of p-bromo-m-cresol led to formation of 2-(4-bromo-3-methylphenoxy)acetate (1). 2-(4-Bromo-3-methyl phenoxy)acetohydrazide (2) is derived from Compound (1) by hydrazination. Compound (2) was reacted with different aromatic aldehydes to yield N-(substituted benzylidiene)-2-(4-bromo-3-methyl phenoxy)acetamide(3a-c). Cyclization of compound (3a-c) with thioglycolic acid yielded 2-(4-bromo-3-methylphenoxy)-N-(4-oxo-2- arylthiazolidin-3-yl) acetamide (4a-c). The newly synthesized compounds were characterized on the basis of spectral studies and evaluated for antibacterial and antifungal activities.

Keywords: Imines, Thiazolidinone, Schiff base, Antimicrobial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
356 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: Bioeconomy, lipids, microalgae, proteins, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
355 Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites

Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying

Abstract:

Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability.

Keywords: Butene, catalytic cracking, HZSM-5, modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3183
354 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: Sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
353 Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds

Authors: PoiSim Khiew, WeeSiong Chiu, ThianKhoonTan, Shahidan Radiman, Roslan Abd-Shukor, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.

Keywords: Metal oxide nanomaterials, Nanophotocatalyst, Organometallic synthesis, Morphology Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
352 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur, Nidhi, Shashi Sharma

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
351 Analysis of Microalgae Lipids Isolated from Basin of Kazakhstan, to Assess the Prospects of Practical Use

Authors: Tatyana A. Karpenyuk, Saltanat B. Orazova, Saule A. Dzhokebaeva, Alla V. Goncharova, Yana S. Tzurkan, Alya M. Kalbaeva

Abstract:

It was analyzed of fatty acid composition of 16 strains of microalgae lipid fractions isolated from different basins of Kazakhstan and characterized by stable active growth in the laboratory. Three species of green microalgae (Oocystis rhomboideus, Chlorococcum infusionum, Dictyochlorella globosa) and three species of diatoms (Synedra sp., Nitzshia sp., Pleurosigma attenuatum) are characterized by a high content of lipids and are promising for further study as a source of polyunsaturated fatty acids.

Keywords: Fatty acids, lipids, microalgae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
350 Flexible Technologies of Granulated Complex Fertilizers

Authors: Andrey M. Norov, Denis A. Pagaleshkin, Pavel S. Fedotov, Viacheslav M. Kolpakov, Konstantin G. Gorbovskiy

Abstract:

The article focuses on the latest research and developments (R&D) aimed at the development of plants for production of complex phosphorus-containing fertilizers which are in line with the principles of the best available techniques (BAT). The advantages of the implemented technical solutions are given. The paper describes developed options of flexible technologies for schemes with DGD (drum granulator dryer) and for schemes with AG-DD (ammoniator-granulator and dryer drum).

Keywords: Ammoniator-granulator and dryer drum, drum granulator dryer, phosphorus-containing fertilizer technology, PK-, NPK-, PKS- and NPKS-fertilizers, wet phosphoric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
349 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: Dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
348 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: Emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
347 Waste Oils pre-Esterification for Biodiesel Synthesis: Effect of Feed Moisture Contents

Authors: Kalala Jalama

Abstract:

A process flowsheet was developed in ChemCad 6.4 to study the effect of feed moisture contents on the pre-esterification of waste oils. Waste oils were modelled as a mixture of triolein (90%), oleic acid (5%) and water (5%). The process mainly consisted of feed drying, pre-esterification reaction and methanol recovery. The results showed that the process energy requirements would be minimized when higher degrees of feed drying and higher preesterification reaction temperatures are used.

Keywords: Waste oils, moisture content, pre-esterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
346 Green Building and Energy Saving

Authors: Nahed Ayedh Al-Hajeri

Abstract:

In a world of climate change and limited fossil fuel resources, renewable energy sources are playing an increasingly important role. Due to industrializations and population growth our economy and technologies today largely depend upon natural resources, which are not replaceable. Approximately 90% of our energy consumption comes from fossil fuels (viz. coal, oil and natural gas). The irony is that these resources are depleting. Also, the huge consumption of fossil fuels has caused visible damage to the environment in various forms viz. global warming, acid rains etc.

Keywords: Kilo watt, kilo watt hour, carbon di-oxide, photovoltaic, environmental protection agency, Kwaiti dinar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4168
345 Polymeric Sustained Biodegradable Patch Formulation for Wound Healing

Authors: Abhay Asthana, Gyati Shilakari Asthana

Abstract:

It is the patient compliance and stability in combination with controlled drug delivery and biocompatibility that forms the core feature in present research and development of sustained biodegradable patch formulation intended for wound healing. The aim was to impart sustained degradation, sterile formulation, significant folding endurance, elasticity, biodegradability, bio-acceptability and strength. The optimized formulation comprised of polymers including Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin, and Citric Acid PEG Citric acid (CPEGC) triblock dendrimers and active Curcumin. Polymeric mixture dissolved in geometric order in suitable medium through continuous stirring under ambient conditions. With continued stirring Curcumin was added with aid of DCM and Methanol in optimized ratio to get homogenous dispersion. The dispersion was sonicated with optimum frequency and for given time and later casted to form a patch form. All steps were carried out under strict aseptic conditions. The formulations obtained in the acceptable working range were decided based on thickness, uniformity of drug content, smooth texture and flexibility and brittleness. The patch kept on stability using butter paper in sterile pack displayed folding endurance in range of 20 to 23 times without any evidence of crack in an optimized formulation at room temperature (RT) (24 ± 2°C). The patch displayed acceptable parameters after stability study conducted in refrigerated conditions (8±0.2°C) and at RT (24 ± 2°C) up to 90 days. Further, no significant changes were observed in critical parameters such as elasticity, biodegradability, drug release and drug content during stability study conducted at RT 24±2°C for 45 and 90 days. The drug content was in range 95 to 102%, moisture content didn’t exceeded 19.2% and patch passed the content uniformity test. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as drug release with correlation factor R2>0.9. The biodegradable patch based formulation developed shows promising results in terms of stability and release profiles.

Keywords: Sustained biodegradation, wound healing, polymeric patch, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
344 Dynamics of Blood Aminoacids in the Wounds- Treatment of Cows with Hydrocele Ointment

Authors: Marzhan Baimurzayeva, Alibek Utyanov, Gulnar Shabdarbaeva, Damir Khussainov

Abstract:

This article introduces the actual problem that is а study of proposed by the authors Hydrocele ointment in amino acids’ metabolism of cows’ blood in inflammation of traumatic origin. Hydrocele ointment has shown a positive effect on inflammatory process and amino acids’ metabolism of animals treated with the drug. Amino acid levels reached physiological parameters on the 10th day after treatment; in the control group this parameter was higher than normal.

Keywords: Amino acids, blood protein, Hydrocele ointment, inflammation, repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
343 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior

Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami

Abstract:

The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.

Keywords: Ni–P coating, electrochemical impedance spectroscopy, heat treatment, cyclic voltammetry, potentiodynamic polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
342 Synthesis of Analogue to Camptothecine

Authors: Abdulkareem Hamid, Adam Daïch

Abstract:

Camptothecin (CPT) is a cytotoxic quinoline alkaloid, which inhibits the DNA enzyme topoisomerase I (topo I). It was discovered in 1966 by M. E. Wall and M. C. Wani in systematic screening of natural products for anticancer drugs. It was isolated from the bark and stem of Camptotheca acuminata (Camptotheca, Happy tree), a tree native in China. CPT showed remarkable anticancer activity in preliminary clinical trials but also low solubility and (high) adverse drug reaction. Because of these disadvantages synthetic and medicinal chemists have developed numerous syntheses of Camptothecine [1][2][3] and various derivatives to increase the benefits of the chemical, with good results. In our method CPT analogues has be six steps starting from available material DL Malic acid.

Keywords: Camptothecine, synthesis, analogue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
341 Chemical Leaching of Metals from Landfill’s Fine Fraction

Authors: E. Balkauskaitė, A. Bučinskas, R. Ivanauskas, M. Kriipsalu, G. Denafas

Abstract:

Leaching of heavy metals (chromium, zinc, copper) from the fine fraction of the Torma landfill (Estonia) was investigated. The leaching kinetics studies have determined the dependence of some metal’s concentration on the leaching time. Metals were leached with Aqua Regia, distilled water and EDTA (Ethylenediaminetetraacetic acid); process was most intensive 2 hours after the start of the experiment, except for copper with EDTA (0.5 h) and lead with EDTA (4 h). During leaching, steady concentrations of Fe, Mn, Cd and Pb were fully stabilized after 8 h; however concentrations of Cu and Ni were not stabilized after 10 h.

Keywords: Landfills, fine fraction, leached metals, leaching kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596