WASET
	%0 Journal Article
	%A Gashin Shahsavari and  Gilles Arnaud-Fassetta and  Roberto Bertilotti and  Alberto Campisano and  Fabien Riou
	%D 2015
	%J International Journal of Civil and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 103, 2015
	%T Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France
	%U https://publications.waset.org/pdf/10002260
	%V 103
	%X Sewer deposits have been identified as a major cause
of dysfunctions in combined sewer systems regarding sewer
management, which induces different negative consequents resulting
in poor hydraulic conveyance, environmental damages as well as
worker’s health. In order to overcome the problematics of
sedimentation, flushing has been considered as the most operative
and cost-effective way to minimize the sediments impacts and
prevent such challenges. Flushing, by prompting turbulent wave
effects, can modify the bed form depending on the hydraulic
properties and geometrical characteristics of the conduit. So far, the
dynamics of the bed-load during high-flow events in combined sewer
systems as a complex environment is not well understood, mostly due
to lack of measuring devices capable to work in the “hostile” in
combined sewer system correctly. In this regards, a one-episode
flushing issue from an opening gate valve with weir function was
carried out in a trunk sewer in Paris to understand its cleansing
efficiency on the sediments (thickness: 0-30 cm). During more than
1h of flushing within 5 m distance in downstream of this flushing
device, a maximum flowrate and a maximum level of water have
been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1
m respectively. This paper is aimed to evaluate the efficiency of this
type of gate for around 1.1 km (from the point -50 m to +1050 m in
downstream from the gate) by (i) determining bed grain-size
distribution and sediments evolution through the sewer channel, as
well as their organic matter content, and (ii) identifying sections that
exhibit more changes in their texture after the flush. For the first one,
two series of sampling were taken from the sewer length and then
analyzed in laboratory, one before flushing and second after, at same
points among the sewer channel. Hence, a non-intrusive sampling
instrument has undertaken to extract the sediments smaller than the
fine gravels. The comparison between sediments texture after the
flush operation and the initial state, revealed the most modified zones
by the flush effect, regarding the sewer invert slope and hydraulic
parameters in the zone up to 400 m from the gate. At this distance,
despite the increase of sediment grain-size rages, D50 (median grainsize)
varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10
mm before and after flushing, respectively. Overall, regarding the
sewer channel invert slope, results indicate that grains smaller than
sands (< 2 mm) are more transported to downstream along about 400
m from the gate: in average 69% before against 38% after the flush
with more dispersion of grain-sizes distributions. Furthermore, high
effect of the channel bed irregularities on the bed material evolution
has been observed after the flush.
	%P 869 - 878