Search results for: properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2871

Search results for: properties

2841 Properties of Rhizophora Charcoal for Product Design

Authors: Tanutpong Phriwanrat

Abstract:

This research investigated the properties of Rhizophora charcoal for product design on 3 aspects: electrical conductor, impurity absorption, and fresh fruit shelf life. After the study, the properties of Rhizophora charcoal were applied to produce local product model at Ban Yisarn, Ampawa District, Samudsongkram Province which can add value to the Rhizophora charcoal as one of the OTOP (One-Tambon-One product). The results showed that the Rhizophora charcoal is not an electrical conductor but good liquid impurity absorber and it can extend fresh fruit shelf life.

Keywords: Design, Product design, Properties of Rhizophora, Rhizophora Charcoal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
2840 Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites

Authors: Priyankar Pratim Deka, Sutanu Samanta

Abstract:

This paper describes the development of new class of epoxy based rice husk filled jute reinforced composites. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylenetetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.

Keywords: Jute, mechanical characterization, natural fiber, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
2839 Mechanical and Hydric Properties of High- Performance Concrete Containing Natural Zeolites

Authors: E. Vejmelková, M. Ondráček, R. Černý

Abstract:

Mechanical and water transport properties of high performance concrete (HPC) containing natural zeolite as partial replacement of Portland cement are studied. Experimental results show that in the investigated mixes the use of natural zeolite leads to an increase of porosity, decrease of compressive strength and increase of moisture diffusivity and water vapor diffusion coefficient, as compared with the reference HPC. However, for the replacement level up to 20% of the mass of Portland cement the concretes still maintain their high performance character and exhibit acceptable water transport properties. Therefore, natural zeolite can be considered an environmental friendly binder with a potential to replace a part of Portland cement in concrete in building industry.

Keywords: Natural zeolites, high-performance concrete; hydric properties, mechanical properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
2838 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH, as a sustainable material, instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Keywords: High temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
2837 Effect on Nutritional and Antioxidant Properties of Yellow Noodles Substituted with Different Levels of Mangosteen (Garcinia mangostana) Pericarp Powder

Authors: Mardiana Ahamad Zabidi, Nurain Abdul Karim, Nur Shazrinna Sazali

Abstract:

Mangosteen (Garcinia mangostana) pericarp is considered as agricultural waste and not fully utilized in food products. It is widely reported that mangosteen pericarp contains high antioxidant properties. The objective of this study is to develop novel yellow alkaline noodle (YAN) substituted with different levels of mangosteen pericarp powder (MPP). YAN formulation was substituted with different levels of MPP (0%, 5%, 10% and 15%). The effect on nutritional and antioxidant properties was evaluated. Higher substitution levels of MPP resulted in significant increase (p<0.05) of ash, fibre, specific mineral elements and antioxidant properties (total phenolic, total flavonoid, anthocyanin and DPPH) than control sample.

Keywords: Yellow alkaline noodle, mangosteen pericarp powder, proximate composition, antioxidant properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
2836 The Effects of Alkalization to the Mechanical Properties of the Ijuk Fiber Reinforced PLA Biocomposites

Authors: Mochamad Chalid, Imam Prabowo

Abstract:

Today, the pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes was aimed to enhance its compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.

Keywords: Polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
2835 Phase Behaviors and Fuel Properties of Bio-Oil-Diesel-Alcohol Blends

Authors: P. Weerachanchai, C. Tangsathitkulchai, M. Tangsathitkulchai

Abstract:

Attempt was made to improve certain characteristics of bio-oil derived from palm kernel pyrolysis by blending it with diesel fuel and alcohols. Two types of alcohol, ethanol or butanol, was used as cosolvent to stabilize the phase of ternary systems. Phase behaviors and basic fuel properties of palm kernel bio-oildiesel- alcohol systems were investigated in this study. Alcohol types showed a significant influence on the phase characteristics with palm kernel bio-oil-diesel-butanol system giving larger soluble area than that of palm kernel bio-oil-diesel-ethanol system. For fuel properties, blended fuels showed superior properties including lower values of density (~860 kg/m3 at 25°C), viscosity (~4.12 mm2/s at 40°C), carbon residue (1.02-2.53 wt%), ash (0.018-0.034 wt%) and pour point (<-25 to -7 °C), increased pH (~ 6.4) and giving reasonable heating values of 32.5-41.2 MJ/kg. To enable the prediction of some properties of fuel mixtures, the measured fuel properties including heating value, density, ash content and pH were fitted by Kay-s mixing rule, whereas the viscosities of blended fuels at different temperatures were correlated by the modified Grunberg-Nissan equation and Andrade equation.

Keywords: Bio-oil, fuel blend, fuel properties, phase behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3833
2834 Affecting Factors of the Mechanical Properties to Phenolic/Fiber Composite

Authors: Thirapat Kitinirunkul, Nattawat Winya, Komson Prapunkarn

Abstract:

Influences of the amount of phenolic, curing temperature and curing time on the Mechanical Properties of phenolic/fiber composite were investigated by using two-level factorial design. The latter was used to determine the affects of those factors on mechanical properties. The purpose of this study was to investigate the affects of amount of phenolic, curing temperature and curing time of the composite to determine the best condition for mechanical properties according to MIL-I-24768 by the tensile strength is more than 103 MPa.

Keywords: Phenolic Resin, Composite, Fiber Composite, Affecting Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4122
2833 Effects of Carbonation on the Microstructure and Macro Physical Properties of Cement Mortar

Authors: Son Tung Pham, William Prince

Abstract:

The objective of this work was to examine the changes in the microstructure and macro physical properties caused by the carbonation of normalised CEM II mortar. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. On the microstructure scale, the evolutions of the cumulative pore volume, pore size distribution, and specific surface area during carbonation were calculated from the adsorption desorption isotherms of nitrogen. We also examined the evolution of macro physical properties such as the porosity accessible to water, the gas permeability, and thermal conductivity. The conflict between the results of nitrogen porosity and water porosity indicated that the porous domains explored using these two techniques are different and help to complementarily evaluate the effects of carbonation. This is a multi-scale study where results on microstructural changes can help to explain the evolution of macro physical properties.

Keywords: Carbonation, cement mortar, microstructure, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
2832 The Relations between the Fractal Properties of the River Networks and the River Flow Time Series

Authors: M. H. Fattahi, H. Jahangiri

Abstract:

All the geophysical phenomena including river networks and flow time series are fractal events inherently and fractal patterns can be investigated through their behaviors. A non-linear system like a river basin can well be analyzed by a non-linear measure such as the fractal analysis. A bilateral study is held on the fractal properties of the river network and the river flow time series. A moving window technique is utilized to scan the fractal properties of them. Results depict both events follow the same strategy regarding to the fractal properties. Both the river network and the time series fractal dimension tend to saturate in a distinct value.

Keywords: river flow time series, fractal, river networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
2831 Influence of Different Thicknesses on Mechanical and Corrosion Properties of α-C:H Films

Authors: S. Tunmee, P. Wongpanya, I. Toda, X. L. Zhou, Y. Nakaya, N. Konkhunthot, S. Arakawa, H. Saitoh

Abstract:

The hydrogenated amorphous carbon films (α-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like carbon (DLC) peaks, representative of the α-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the α-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values showed the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electrochemical properties showed that the α-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt.% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited α-C:H films exhibited excellent mechanical properties and corrosion resistance.

Keywords: Thickness, Mechanical properties, Electrochemical corrosion properties, α-C:H film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5270
2830 On the Properties of Pseudo Noise Sequences with a Simple Proposal of Randomness Test

Authors: Abhijit Mitra

Abstract:

Maximal length sequences (m-sequences) are also known as pseudo random sequences or pseudo noise sequences for closely following Golomb-s popular randomness properties: (P1) balance, (P2) run, and (P3) ideal autocorrelation. Apart from these, there also exist certain other less known properties of such sequences all of which are discussed in this tutorial paper. Comprehensive proofs to each of these properties are provided towards better understanding of such sequences. A simple test is also proposed at the end of the paper in order to distinguish pseudo noise sequences from truly random sequences such as Bernoulli sequences.

Keywords: Maximal length sequence, pseudo noise sequence, punctured de Bruijn sequence, auto-correlation, Bernoulli sequence, randomness tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6700
2829 Effects of Coupling Agent on the Properties of Durian Skin Fibre Filled Polypropylene Composite

Authors: Hazleen Anuar, Nur Aimi Mohd Nasir, Yousuf El-Shekeil

Abstract:

Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological, and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.

Keywords: Durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
2828 Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy

Authors: M. J. Shivaram, Shashi Bhushan Arya, Jagannath Nayak, Bharat Bhooshan Panigrahi

Abstract:

Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method.  In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH4HCO3). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling.

Keywords: Ball Milling, compressive strengths, microstructure, porous Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
2827 Effect of adding Supercritical Carbon Dioxide Extracts of Cinnamomum tamala (Bay Leaf) on Nutraceutical Property of Tofu

Authors: Sudip Ghosh, Probir Kumar Ghosh, Paramita Bhattacharjee

Abstract:

Supercritical carbon dioxide extracts of Cinnamomum tamala (bay) leaves obtained at 55°C, 512 bar was found to have appreciable nutraceutical properties and was successfully employed as value-added ingredients in preparation of tofu. The bay leaf formulated tofu sample was evaluated for physicochemical properties (pH, texture analysis and lipid peroxidation), proximate analysis, phytochemical properties (total phenol content, antioxidant properties and total reducing sugar), microbial load and sensory profile analysis for a storage period of ten days, vis-à-vis an experimental control sample. These assays established the superiority of the tofu sample formulated with supercritical carbon dioxide extract of bay leaf over the control sample. Bay leaf extract formulated tofu is a new green functional food with promising nutraceutical benefits. 

Keywords: Cinnamomum tamala, Physicochemical properties Phytochemical properties, Supercritical carbon dioxide extraction, Tofu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
2826 Photodetector Engineering with Plasmonic Properties

Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim

Abstract:

In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.

Keywords: Nanoparticles, plasmonic, plasmon-plasmon interaction, plasmonic photodetector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
2825 Effects of Temperature-Dependent Material Properties on Stress and Temperature in Cracked Metal Plate under Electric Current Load

Authors: Thomas Jin-Chee Liu

Abstract:

Using the finite element analyses, this paper discusses the effects of temperature-dependent material properties on the stress and temperature fields in a cracked metal plate under the electric current load. The practical and complicated results are obtained when the temperature-dependent material properties are adopted in the analysis. If the simplified (temperature-independent) material properties are used, incorrect results will be obtained.

Keywords: Joule heating, temperature-dependent, crack tip, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
2824 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: Excess properties, relaxation time, static dielectric constant, time domain refelectometry technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
2823 Control-flow Complexity Measurement of Processes and Weyuker's Properties

Authors: Jorge Cardoso

Abstract:

Process measurement is the task of empirically and objectively assigning numbers to the properties of business processes in such a way as to describe them. Desirable attributes to study and measure include complexity, cost, maintainability, and reliability. In our work we will focus on investigating process complexity. We define process complexity as the degree to which a business process is difficult to analyze, understand or explain. One way to analyze a process- complexity is to use a process control-flow complexity measure. In this paper, an attempt has been made to evaluate the control-flow complexity measure in terms of Weyuker-s properties. Weyuker-s properties must be satisfied by any complexity measure to qualify as a good and comprehensive one.

Keywords: Business process measurement, workflow, complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
2822 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
2821 Effect of Fine-Ground Ceramic Admixture on Early Age Properties of Cement Paste

Authors: Z. Pavlík, M. Pavlíková, P. Volfová, M. Keppert, R. Černý

Abstract:

Properties of cement pastes with fine-ground ceramics used as an alternative binder replacing Portland cement up to 20% of its mass are investigated. At first, the particle size distribution of cement and fine-ground ceramics is measured using laser analyser. Then, the material properties are studied in the early hardening period up to 28 days. The hydration process of studied materials is monitored by electrical conductivity measurement using TDR sensors. The changes of materials- structures within the hardening are observed using pore size distribution measurement. The compressive strength measurements are done as well. Experimental results show that the replacement of Portland cement by fine-ground ceramics in the amount of up to 20% by mass is acceptable solution from the mechanical point of view. One can also assume similar physical properties of designed materials to the reference material with only Portland cement as binder.

Keywords: Fine-ground ceramics, cement pastes, early age properties, mechanical properties, pore size distribution, electrical conductivity measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
2820 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements

Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach

Abstract:

In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.

Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
2819 The Influence of Doping of Fullerene Derivative (PCBM) on the Optical Properties of Vanadyl Phthalocyanine (VOPc)

Authors: Fakhra Aziz, K. Sulaiman, Kh. S. Karimov, M. Hassan Sayyad

Abstract:

This paper presents a spectroscopic study on doping of Vanadyl pathalocyanine (VOPc) by [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The films are characterized by UV/Vis/NIR spectroscopy. A drastic increase in the absorption coefficient has been observed with increasing dopant concentration. Optical properties of VOPc:PCBM films deposited by spin coating technique were studied in detail. Optical band gap decreased with the PCBM incorporation in the VOPc film. Optical band gap calculated from the absorption spectra decreased from 3.32 eV to 3.26 eV with a variation of 0–75 % of PCBM concentration in the VOPC films.

Keywords: Optical properties, spin-coating, optical properties, optical energy gap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
2818 Determination of Electromagnetic Properties of Human Tissues

Authors: Iliana Marinova, Valentin Mateev

Abstract:

In this paper a computer system for electromagnetic properties measurements is designed. The system employs Agilent 4294A precision impedance analyzer to measure the amplitude and the phase of a signal applied over a tested biological tissue sample. Measured by the developed computer system data could be used for tissue characterization in wide frequency range from 40Hz to 110MHz. The computer system can interface with output devices acquiring flexible testing process.

Keywords: Electromagnetic properties, human tissue, bioimpedance, measurement system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
2817 Optimization of Heat Treatment Due to Austenising Temperature, Time and Quenching Solution in Hadfield Steels

Authors: Sh. Hosseini, M. B. Limooei, M. Hossein Zade, E. Askarnia, Z. Asadi

Abstract:

Manganese steel (Hadfield) is one of the important alloys in industry due to its special properties. High work hardening ability with appropriate toughness and ductility are the properties that caused this alloy to be used in wear resistance parts and in high strength condition. Heat treatment is the main process through which the desired mechanical properties and microstructures are obtained in Hadfield steel. In this study various heat treatment cycles, differing in austenising temperature, time and quenching solution are applied. For this purpose, the same samples of manganese steel was heat treated in 9 different cycles, and then the mechanical properties and microstructures were investigated. Based on the results of the study, the optimum heat treatment cycle was obtained.

Keywords: Manganese steel (Hadfield), heat treatment, austenising temperature, austenising time, quenching solution, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4494
2816 Some Applications of Transition Matrices via Eigen Values

Authors: Adil AL-Rammahi

Abstract:

In this short paper, new properties of transition matrix were introduced. Eigen values for small order transition matrices are calculated in flexible method. For benefit of these properties applications of these properties were studied in the solution of Markov's chain via steady state vector, and information theory via channel entropy. The implemented test examples were promised for usages.

Keywords: Eigen value problem, transition matrix, state vector, information theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
2815 Effect of Temperature of Exposure on Properties of Cement Mortar with MSWI Bottom Ash

Authors: Z. Pavlík, M. Keppert, J. Žumár, M. Pavlíková, A. Trník, R. Černý

Abstract:

Effect of high temperature exposure on properties of cement mortar containing municipal solid waste incineration (MSWI) bottom ash as partial natural aggregate replacement is analyzed in the paper. The measurements of mechanical properties, bulk density, matrix density, total open porosity, sorption and desorption isotherms are done on samples exposed to the temperatures of 20°C to 1000°C. TGA analysis is performed as well. Finally, the studied samples are analyzed by IR spectroscopy in order to evaluate TGA data.

Keywords: Cement mortar, high temperature exposure, MSWI bottom ash, natural aggregate replacement, mechanical properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
2814 Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures

Authors: Prakash Chand, Anurag Gaur, Ashavani Kumar

Abstract:

In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nanostructures (Zn1-δCraFebO; where δ = a + b = 20%, a = 5, 6, 8 & 10% and b = 15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractrometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UVvisible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases.

Keywords: Nanostructures, Optical Properties, Sol-gel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4699
2813 Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil

Authors: Moez Selmi, Mariem Kacem, Mehrez Jamei, Philippe Dubujet

Abstract:

Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil.

Keywords: EPB, clay soils, foam agent, hydro-mechanical properties, degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
2812 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances

Authors: N. H. Ismail, A. A. A. Nassar, K. H. Baz

Abstract:

Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.

Keywords: Quantum Dots, Nano-Particles, LSPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802