Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: Excess properties, relaxation time, static dielectric constant, time domain refelectometry technique.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3669246

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573

References:


[1] A.V. Patil, G.N. Shinde, V.P. Pawar, “Dielectric relaxation study of hydrogen bonded structures in ethanolamine with diethanolamine using TDR technique,” J. Mol. Liq., 168, April. 2012, pp- 42-46.
[2] A.V. Patil and V.P. Pawar, “Microwave dielectric spectra and molecular interaction in a binary mixture of ethanolamine with diethanolamine,” J. Mol. Liq., 188, Dec. 2013, pp-1-4.
[3] A.V. Patil, B.D. Achole, G.N. Shinde and V.P. Pawar, “Study of molecular interaction in binary mixture of dimethylene chloride with dimethylformamide using Bruggeman model,” Scholars Research Library, Archives of Applied Science Research, 4(4), 2.12, pp-1665-1669.
[4] V.P. Pawar and A.V. Patil, “Dielectric relaxation studies on molecular interaction in binary mixture of dimethylene chloride with nmethylformamide,” Fluid Phase Equilib., 376, 2014, pp-111-115.
[5] V.P. Pawar, S.C. Mehrotra, “Dielectric relaxation study of liquids having chloro group with liquids: I Chlorobenzene with methanol, ethanol and propan-1-ol,” J. Sol. Chem., 31(7), 2002, pp-559-576.
[6] V.P. Pawar, S.C. Mehrotra, “Dielectric relaxation study of chloro group with associative liquids. II. 1,2-dichloroethane with methanol, ethanol, and 1-propanol,” J. Sol. Chem., 31(7), 2002, pp-577-588.
[7] A.V. Patil and V.P. Pawar, Dielectric relaxation study of dielethanolamine with triethanolamine at melting points using TDR,” Bio-nano Frontier, 8(3), 2015, pp-308-311.
[8] V.P. Pawar and A.V. Patil, “Dielectric and thermodynamic properties in a binary mixture of dimethylene with formamide,” J. Mol. Liq., 206, 2015, pp-239-243.
[9] C. M. Roland, R. B. Bogoslovo and R. Casalini et al, “Thermodynamic scaling and the characteristic relaxation time at the phase transition of liquid crystal,” J. Chem. Phys., 128, 2008, pp-224506.
[10] G. H. William, G. G. Steven and K. W. Johnson, “Thermodynamic Properties of the Fluid and solid phases for inverse power potentials,” J. Chem. Phys., 55(3), 1971, pp-1128.
[11] C. E. Shannon, “Communication in the presences of noise,” Proc. IRE., 37, 1949, pp-10.
[12] H. A. Samulon, Spectrum analysis of transient response curves, Proc. IRE., 39, 1951, pp-175.
[13] R. H. Cole, J. G. Berberian, S. Mashimo, G. Chryssikos, A. Burns and E. Tombari, Time domain reflection method for dielectric measurements to 10 GHz, J. Appl. Phys. 66, 1989, pp-793.
[14] P. Debye, “Polar Molecules; The chemical catalogue company,” Dover, New York, 1929.
[15] K. S. Cole and R. H. Cole, Dielectric relaxation in glycerine, J. Chem. Phys., 18, 1950, pp-1417.
[16] D. W. Davidson and R. H. Cole, Dielectric relaxation in glycerine, J. Chem. Phys., 18, 1950, pp-1417.
[17] P.R. Bevington, “Data reduction and error analysis for the physical sciences,” McGraw Hill: New York, 1969.
[18] M. Tabellout, P. Lanceleur, J.R. Emery, D. Hayward and R.A. Pethrick, “Dielectric, ultrasonic and carbon-13 nuclear magnetic resonance relaxation measurements of t-butyl alcohol-water mixtures,” J. Chem. Soc. Faraday Trans., 86, 1990, pp-1453-1501.
[19] S.C. Mehrotra and J.E. Boggs, “Effect of collision-induced phase shifts on the line widths and line shifts of rotational spectral lines,” J. Chem. Phys., 66, 1977, pp-5306-5312.
[20] M. I. Aralaguppi, T. M. Aminabhavi, R. H. Balundgi and S. S. Joshi, J. Phy. Chem., 95, 1991, pp-5299.
[21] S. F. Al-Azzawl, A. M. Awwad, A. M. Al-Dujaili and M. K. Al-Noori, J. Chem. Engg. Data, 35, 1990 pp-463.