Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31515
The Effects of Alkalization to the Mechanical Properties of the Ijuk Fiber Reinforced PLA Biocomposites

Authors: Mochamad Chalid, Imam Prabowo


Today, the pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes was aimed to enhance its compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.

Keywords: Polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513


[1] A. K. Mohanty, M. Misra, L. T. Drzal, S. E. Selke, B. R. Harte, G. Hinrichsen, “Natural fibres, biopolymers, and biocomposites: an introduction,” Boca Raton: CRC Press, 2005, pp. 1-36.
[2] M. John, S. Thomas, “Biofibres and biocomposites,” Carbohydr. Polym., vol. 71, 2008 ,pp. 343–64
[3] S.R. Suprakas, B. Mosto, “Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world,” Prog. Mater. Sci., vol. 50, 2005, pp. 962-1079.
[4] L. Yu, L. Chen, “Biodegradable polymer blends and composites from renewable resources,” 2009, John Willey & Sons.
[5] G. Donal, “A Literature Review of Poly(Lactic Acid),” Journal of Polymers and the Environment, April 2001, Vol. 9, No. 2.
[6] S. R. Suprakas, M. Pralay, O. Masami, Y. Kazunobu, U. Kazue, “New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties,” Macromolecules, vol. 35, 2002, pp. 3104-3110.
[7] S. Gu, M. Yang, T. Yu, T. Ren, J. Ren, “Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension”, Polym. Int., 2008, vol. 57, pp. 982-986.
[8] D. Cohn, A. H. Salomon, “Designing biodegradable multiblock PCL/PLA thermoplastic elastomer”, Journal Biomaterials 2005, vol. 26, pp. 2297-2305.
[9] S. H. Masud, T. D. Lawrence, M. Manjusri, “A study on biocomposites from recycled newspaper fiber and poly(lactic acid)”, Ind Eng Chem Res 2005, vol. 44, pp. 5593-5601.
[10] A. K. M. M Alam, M. D. H. Beg, M. F. Mina, M. R. Khan, D. R. M. Prasad, “Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites”, Journal Composites: Part A 43, 2012, pp. 1921– 1929.
[11] Y. Tao, L. Yan, R Jie, “Preparation and properties of short natural fiber reinforced poly(lactic acid) composites”. Met Soc China 19, 2009, pp. s651 - s655.
[12] S. Lisman, N. N. Antonio, Y. Hiroyuki, “The effect of crystallization of PLA on the thermal and mechanical properties of micro-fibrillated cellulose-reinforced PLA composites”, Journal Composites Science and Technology 69, 2009, pp.1187–1192.
[13] O. Faruk, K. B. Andrzej, F. Hans-Peter, S. Mohini, “Biocomposites reinforced with natural fibers: 2000–2010”, Journal Elsevier Progress in Polymer Science 37, 2012, pp.1552– 1596.
[14] M. R. Ishaka, S. M. Sapuana, Z. Lemana, M. Z. A. Rahmand, U. M. K. Anwarc, J. P. Siregara, “Sugar palm (Arenga pinnata): Its fibres, polymers and composites”, Journal Elsevier Carbohydrate Polymers 91, 2013, pp.699–710.
[15] S. Misri, Z. Leman, S. M. Sapuan, M. R. Ishak, “Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite”, IOPSIENCE Publisher, 2010.
[16] M. R. Ishak, Z. Leman, S. M. Sapuan, M. Y. Salleh, S. Misri, “The Effect of Sea Water Treatment on the Impact and Flexural Strength of Sugar Palm Fibre Reinforced Epoxy Composites”, International Journal of Mechanical and Materials Engineering (IJMME), Vol. 4 , No. 3, 2009, pp.316-320.
[17] D. Bachtiar, S. M. Sapuan, M. M. Hamdan, “The effect of alkaline treatment on tensile properties of sugar palmfibre reinforced epoxy composites”, Journal Materials and Design 29, 2008, pp.1285–1290.
[18] D. Bachtiar, S. M. Sapuan, A. Khalina, E. S. Zainudin, K. Z. M. Dahlan, “The Flexural, Impact and Thermal Properties of Untreated Short Sugar Palm Fibre Reinforced High Impact Polystyrene (HIPS) Composites”, Smithers Rapra Technology, 2010.
[19] D. Bahtiar S. M. Sapuan, “The Mechanical Properties Sugar Palm Fibre Reinforced High Impact Polystyrene (HIPS) Composites”, Procedia Chemistry 4, 2012, pp. 101 – 106.
[20] J. Sahari, S. M. Sapuan, “Natural fibre reinforced biodegradable polymercomposites”, Reviews on Advanced Materials Science, 30, 2011, pp. 14–34.
[21] A. K. Mohanty, M. Misra, L. T. Drzal, “Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification”, 2002, pp.789-796.
[22] K. Stana-Kleinschek, V. Ribitsch, T. Kreze, M. Sfiligoj-Smole, Z. Persin, “Correlation of regenerated cellulose fibres morphology and surface free energy components”, Lenzinger Berichte 2003, 82, pp.83– 95.
[23] A. Jahn, M.W. Schroeder, M. Futting, K. Schezel, W. Diepenbrock, “Characterisation of alkali treated flax fiber by means of PT Raman spectroscopy and environmental SEM”, Spectrochim Acta A: Mol Biomol Spectrosc, 227,2002.
[24] C. William D, “Materials Science and Engineering”, John Wiley & Sons (Asia) Pte Ltd, 2011.
[25] M. M. Kabir, H. Wang, K. T. Lau, F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview Elsevier, 2012.
[26] P. V. Joseph, K. Joseph, S. Thomas, CKS. Pillai, VS. Prasad, G. Groeninckx et al., “The thermal and crystallisation studies of short sisal fibre reinforced polypropylenecomposites”, Compos Part A – Appl Sci Manuf 2003, 34(3), pp. 253–66.
[27] K. L. Bowles, S. Frimpong, “Void effects on the interlaminar shear strength of unidirectional graphite–fiber-reinforced composites”, J Compos Mater 1992, 26(10), pp.1487–509.
[28] A. Vaxman, M. Narkis, A. Siegmann, S. Kenig, “Void formation in short-fiberthermoplastic composites”, Polym Compos 2004, 10(6), pp.449–53.
[29] G. Alexandros, Polymer Blends topics on the basic and manufacturing, Delft: Delft University of Technology,2000
[30] D. Hull, W. Clyne, An Introduction to composites materials, Cambridge: Cambridge University Press, 1996.
[31] S. Fakirov, D. Bhattacharyya, editors, “Engineering biopolymers: homopolymers, blends and composites”, Munich Hanser Publishers; 2007, ISBN: 978-1-56990-405-3.
[32] R. Agrawal, N. S. Saxena, K. B. Sharma, S. Thomas, M. S. Sreekala, “Activation energy and crystallization kinetics of untreated and treated oil palm fiber reinforced phenol formaldehyde composites”, Material Science Eng, vol. 277, 2000, pp. 77–82.
[33] Y. M. Mwaikambo, MP. Ansell, “The effect of chemical treatment on the properties of hemp, sisal, jute and kapok fibres for composite reinforcement”, Angew Makromol Chem 1999, 272, pp.108–16.
[34] D. Bachtiar, M, Sapuan, A, Khalina, S, Zainudin, M, Dahlan, “The Flexural, Impact and Thermal Properties of Untreated Short Sugar Palm Fiber Reinforced High Impact Polystyrene (HIPS)”, Polymers and Polymer Composites, vol. 20, 2011, pp. 493-500.