Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31903
On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements

Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach


In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.

Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528


[1] H. Altenbach, J. Altenbach, W. Kissing, Mechanics of Composite Structural Elements, Berlin: Springer, 2010.
[2] N. Engheta and R.W. Ziolkowski (Ed.), Introduction, History and Fundamental Theories of Double-Negative (DNG) Metamaterials, Metamaterials: Physics and Engineering Explorations, Hoboken: Wiley, 2006, ch.1.
[3] F. Capolino (Ed.), Theory and Phenomena of Metamaterials, Boca Raton: CRC Press, 2009.
[4] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, Chiral metamaterials: simulations and experiments. J. Opt. A: Pure Appl. Opt., 11 (2009), pp. 1--10.
[5] K. Fricke, Piezoelectric properties of GaAs for application in stress transducers, J. Appl. Phys., 70 (1991), pp. 914--918.
[6] Y.W. Hsu, S.S. Lu, P.Z. Chang, Piezoresisitive response induced by piezoelectric charges in n-type GaAs mesa resistors for application in stress transducers, J. Appl.Phys., 85 (1999), 1, pp. 333-340.
[7] P. Zhao, D. Pisani, C. S Lynch, Piezoelectric strain sensor/actuator resettes, Smart Materials and Structures, 20(2011)10, pp. 11-17.
[8] E. A. Vopilkin, V.I. Shashkin, et. al., Anisotropic effect in microelectromechanical systems based on the Organizational Structure of epitaxial heterostructures, J. Appl.Phys., 79 (2009) 10, pp. 75-79 (in Russ).
[9] G. A. Maugin, Continuum Mechanics of Electromagnetic Solids, Oxford: Elsevier, 1988.
[10] T. Ikeda, Fundamentals of Piezoelectricity, New York: Oxford University Press, 1990.
[11] E. V. Naumova, V. Ya. Prinz, et. al., Manufacturing chiral electromagnetic metamaterials by directional rolling of strained heterofilms, J. Opt. A: Pure Appl. Opt. 11 (2009) 7, pp. 627--632.
[12] V. Ya. Prinz, S. V. Golod, Elastic silicon-film-based nanoshells: formation, properties, and application, Journal of Applied Mechanics and Technical Physics, 47 (2006) 6, pp. 868 -- 878.
[13] V. Ya. Prinz, Precise semiconductor nanotubes and nanoshells fabricated on (110) and (111) Si and GaAs Physica E, 23 (2004), pp. 260 -- 268.
[14] V. Ya. Prinz et al, Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays, Physica E, 6 (2000), pp. 828-- 831.
[15] V. Mittol, Optimization of Polymer Nanocomposite Properties, Weinheim: Wiley, 2010.
[16] J. H. Koo, Polymer Nanocomposites. Processing, Characterization, and Applications. New York: McGraw-Hill Companies, 2006.
[17] J. E. Shigley, Ch. R. Mischke, R. G. Budynas, PMechanical Engineering Design. New York: McGraw-Hill Companies, 2004.
[18] Y.-W. Mai, Zh.-Z. Yu. Ñ (Ed.), Polymer nanocomposites, Cambridge: Woodhead Publishing Limited, 2006.
[19] A. A. Girchenko, V. A. Eremeyev and N. F. Morozov, Modelling of spriral nanofilms with piezoelectric properties, Physical Mesomechanics, 14 (2011), pp. 10--15.
[20] R. Christensen, Mechanics of Composite Materials, Weinheim: Wiley, 1979.
[21] W. Voigt, Lehrbuch der Kristallphysik. Johnson Reprint Corp, 1966.
[22] Simulia ABAQUS. User's manual. 6.10.1. Johnson Reprint Corp, 2011.