Search results for: human robot interaction
3070 Route Training in Mobile Robotics through System Identification
Authors: Roberto Iglesias, Theocharis Kyriacou, Ulrich Nehmzow, Steve Billings
Abstract:
Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.Keywords: Mobile robotics, system identification, non-linear modelling, NARMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17223069 Robot Task-Level Programming Language and Simulation
Authors: M. Samaka
Abstract:
This paper presents the development of a software application for Off-line robot task programming and simulation. Such application is designed to assist in robot task planning and to direct manipulator motion on sensor based programmed motion. The concept of the designed programming application is to use the power of the knowledge base for task accumulation. In support of the programming means, an interactive graphical simulation for manipulator kinematics was also developed and integrated into the application as the complimentary factor to the robot programming media. The simulation provides the designer with useful, inexpensive, off-line tools for retain and testing robotics work cells and automated assembly lines for various industrial applications.Keywords: Robot programming, task-level programming, robot languages, robot simulation, robotics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32623068 Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption and OpenCV Library
Authors: Hazim Abdulsada
Abstract:
The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality.
Keywords: Fuzzy logic, Mobile robots, OpenCV, Subsumption, Under vehicle inspection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28123067 Design and Fabrication of a Column-Climber Robot (Koala Robot)
Authors: Maziar Sadeghi, Amir Moradi
Abstract:
This paper proposes a robot able to climb Columns. This robot is not dependent on the diameter and material of the columns. Some climbing robots have been designed up to now but Koala robot was designed and fabricated for climbing columns exclusively. Simple kinematics of climbing in the nature inspired us to design this robot. We used two linear mechanisms to grip the column. The gripper consists of a DC motor and a power screw mechanism with a linear bushing as a guide. This mechanism provides enough force to grip the column. In addition we needed an actuator for climbing the column; hence, two pneumatic jacks were used. All the mechanical parts were designed according to the exerted forces and operational condition. The prototype can be simply installed and controlled on the column by an inexperienced operator. This robot is intended for inspection and surveillance of pipes in oil industries and power poles in electric industries.Keywords: Robot, Column-climber, Gripping mechanism, Koala.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21753066 Tracked Robot with Blade Arms to Enhance Crawling Capability
Authors: Jhu-Wei Ji, Fa-Shian Chang, Lih-Tyng Hwang, Chih-Feng Liu, Jeng-Nan Lee, Shun-Min Wang, Kai-Yi Cho
Abstract:
This paper presents a tracked robot with blade arms powered to assist movement in difficult environments. As a result, the tracked robot is able to pass a ramp or climb stairs. The main feature is a pair of blade arms on both sides of the vehicle body working in collaboration with previously validated transformable track system. When the robot encounters an obstacle in a terrain, it enlists the blade arms with power to overcome the obstacle. In disaster areas, there usually will be terrains that are full of broken and complicated slopes, broken walls, rubbles, and ditches. Thereupon, a robot, which is instructed to pass through such disaster areas, needs to have a good off-road capability for such complicated terrains. The robot with crawling-assisting blade arms would overcome the obstacles along the terrains, and possibly become to be a rescue robot. A prototype has been developed and built; experiments were carried out to validate the enhanced crawling capability of the robot.
Keywords: Tracked robot, rescue robot, blade arm, crawling ability, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14063065 Human Interactive E-learning Systems using Head Posture Images
Authors: Yucel Ugurlu
Abstract:
This paper explains a novel approach to human interactive e-learning systems using head posture images. Students- face and hair information are used to identify a human presence and estimate the gaze direction. We then define the human-computer interaction level and test the definition using ten students and seventy different posture images. The experimental results show that head posture images provide adequate information for increasing human-computer interaction in e-learning systems.
Keywords: E-learning, image segmentation, human-presence, gaze-direction, human-computer interaction, LabVIEW
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16233064 An Approach for Integration of Industrial Robot with Vision System and Simulation Software
Authors: Ahmed Sh. Khusheef, Ganesh Kothapalli, Majid Tolouei-Rad
Abstract:
Utilization of various sensors has made it possible to extend capabilities of industrial robots. Among these are vision sensors that are used for providing visual information to assist robot controllers. This paper presents a method of integrating a vision system and a simulation program with an industrial robot. The vision system is employed to detect a target object and compute its location in the robot environment. Then, the target object-s information is sent to the robot controller via parallel communication port. The robot controller uses the extracted object information and the simulation program to control the robot arm for approaching, grasping and relocating the object. This paper presents technical details of system components and describes the methodology used for this integration. It also provides a case study to prove the validity of the methodology developed.Keywords: industrial robot, integration, simulation, vision system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22243063 Research and Development of a Biomorphic Robot Driven by Shape Memory Alloys
Authors: Y.J. Lai, H.Y. Peng, M.W. Wu, J. Shaw
Abstract:
In this study, we used shape memory alloys as actuators to build a biomorphic robot which can imitate the motion of an earthworm. The robot can be used to explore in a narrow space. Therefore we chose shape memory alloys as actuators. Because of the small deformation of a wire shape memory alloy, spiral shape memory alloys are selected and installed both on the X axis and Y axis (each axis having two shape memory alloys) to enable the biomorphic robot to do reciprocating motion. By the mechanism we designed, the robot can increase the distance as it moves in a duty cycle. In addition, two shape memory alloys are added to the robot head for controlling right and left turns. By sending pulses through the I/O card from the controller, the signals are then amplified by a driver to heat the shape memory alloys in order to make the SMA shrink to pull the mechanism to move.Keywords: Biomorphic Robot, Shape Memory Alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16543062 The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes
Authors: A. N. K. Nasir, M. A. Ahmad, R. M. T. Raja Ismail
Abstract:
The research on two-wheels balancing robot has gained momentum due to their functionality and reliability when completing certain tasks. This paper presents investigations into the performance comparison of Linear Quadratic Regulator (LQR) and PID-PID controllers for a highly nonlinear 2–wheels balancing robot. The mathematical model of 2-wheels balancing robot that is highly nonlinear is derived. The final model is then represented in statespace form and the system suffers from mismatched condition. Two system responses namely the robot position and robot angular position are obtained. The performances of the LQR and PID-PID controllers are examined in terms of input tracking and disturbances rejection capability. Simulation results of the responses of the nonlinear 2–wheels balancing robot are presented in time domain. A comparative assessment of both control schemes to the system performance is presented and discussed.Keywords: PID, LQR, Two-wheels balancing robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52813061 Robot-Assisted Therapy for Autism Spectrum Disorder: Evaluating the Impact of NAO Robot on Social and Language Skills
Authors: M. Aguilar, D. L. Araujo, A. L. Avendaño, D. C. Flores, I. Lascurain, R. A. Molina, M. Romero
Abstract:
This work presents an application of social robotics, specifically the use of a NAO Robot as a tool for therapists in the treatment of Autism Spectrum Disorder (ASD). According to this, therapies approved by specialist psychologists have been developed and implemented, focusing on creating a triangulation between the robot, the child, and the therapist, aiming to improve their social and language skills, as well as communication skills and joint attention. In addition, quantitative and qualitative analysis tools have been developed and applied to prove the acceptance and the impact of the robot in the treatment of ASD.
Keywords: Autism Spectrum Disorder, NAO robot, social and language skills, therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883060 Sensor-Based Motion Planning for a Car-like Robot Based On Bug Family Algorithms
Authors: Dong-Hyung Kim, Ji Yeong Lee, Chang-Soo Han
Abstract:
This paper presents a sensor-based motion planning algorithm for 3-DOF car-like robots with a nonholonomic constraint. Similar to the classic Bug family algorithms, the proposed algorithm enables the car-like robot to navigate in a completely unknown environment using only the range sensor information. The car-like robot uses the local range sensor view to determine the local path so that it moves towards the goal. To guarantee that the robot can approach the goal, the two modes of motion are repeated, termed motion-to-goal and wall-following. The motion-to-goal behavior lets the robot directly move toward the goal, and the wall-following behavior makes the robot circumnavigate the obstacle boundary until it meets the leaving condition. For each behavior, the nonholonomic motion for the car-like robot is planned in terms of the instantaneous turning radius. The proposed algorithm is implemented to the real robot and the experimental results show the performance of proposed algorithm.
Keywords: Motion planning, car-like robot, bug algorithm, autonomous motion planning, nonholonomic constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22373059 Kinematics and Control System Design of Manipulators for a Humanoid Robot
Authors: S. Parasuraman
Abstract:
In this work, a new approach is proposed to control the manipulators for Humanoid robot. The kinematics of the manipulators in terms of joint positions, velocity, acceleration and torque of each joint is computed using the Denavit Hardenberg (D-H) notations. These variables are used to design the manipulator control system, which has been proposed in this work. In view of supporting the development of a controller, a simulation of the manipulator is designed for Humanoid robot. This simulation is developed through the use of the Virtual Reality Toolbox and Simulink in Matlab. The Virtual Reality Toolbox in Matlab provides the interfacing and controls to an environment which is developed based on the Virtual Reality Modeling Language (VRML). Chains of bones were used to represent the robot.Keywords: Mobile robot, Robot Kinematics, Robot Navigation, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15983058 Energy Management Techniques in Mobile Robots
Authors: G. Gurguze, I. Turkoglu
Abstract:
Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.
Keywords: Energy management, mobile robot, robot administration, robot management, robot planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15703057 The Interaction between Human and Environment on the Perspective of Environmental Ethics
Authors: Mella Ismelina Farma Rahayu
Abstract:
Environmental problems could not be separated from unethical human perspectives and behaviors toward the environment. There is a fundamental error in the philosophy of people’s perspective about human and nature and their relationship with the environment, which in turn will create an inappropriate behavior in relation to the environment. The aim of this study is to investigate and to understand the ethics of the environment in the context of humans interacting with the environment by using the hermeneutic approach. The related theories and concepts collected from literature review are used as data, which were analyzed by using interpretation, critical evaluation, internal coherence, comparisons, and heuristic techniques. As a result of this study, there will be a picture related to the interaction of human and environment in the perspective of environmental ethics, as well as the problems of the value of ecological justice in the interaction of humans and environment. We suggest that the interaction between humans and environment need to be based on environmental ethics, in a spirit of mutual respect between humans and the natural world.
Keywords: The environment, environmental ethics, the interaction, value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15983056 Motion Planning of SCARA Robots for Trajectory Tracking
Authors: Giovanni Incerti
Abstract:
The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.Keywords: Motion planning, SCARA robot, trajectory tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24053055 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).
Keywords: Motion detection, motion tracking, trajectory analysis, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17303054 Dynamic Analyze of Snake Robot
Authors: Seif Dalilsafaei
Abstract:
Crawling movement as a motive mode seen in nature of some animals such as snakes possesses a specific syntactic and dynamic analysis. Serpentine robot designed by inspiration from nature and snake-s crawling motion, is regarded as a crawling robot. In this paper, a serpentine robot with spiral motion model will be analyzed. The purpose of this analysis is to calculate the vertical and tangential forces along snake-s body and to determine the parameters affecting on these forces. Two types of serpentine robots have been designed in order to examine the achieved relations explained below.Keywords: Force, Dynamic analyze, Joint and Snake robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19433053 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home
Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo
Abstract:
Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.Keywords: Training, rehabilitation, SCI patient, welfare, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20373052 Software Development for the Kinematic Analysis of a Lynx 6 Robot Arm
Authors: Baki Koyuncu, Mehmet Güzel
Abstract:
The kinematics of manipulators is a central problem in the automatic control of robot manipulators. Theoretical background for the analysis of the 5 Dof Lynx-6 educational Robot Arm kinematics is presented in this paper. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. The Denavit-Harbenterg (D-H) model of representation is used to model robot links and joints in this study. Both forward and inverse kinematics solutions for this educational manipulator are presented, An effective method is suggested to decrease multiple solutions in inverse kinematics. A visual software package, named MSG, is also developed for testing Motional Characteristics of the Lynx-6 Robot arm. The kinematics solutions of the software package were found to be identical with the robot arm-s physical motional behaviors.
Keywords: Lynx 6, robot arm, forward kinematics, inverse kinematics, software, DH parameters, 5 DOF , SSC-32 , simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53683051 Development of a Weed Suppression Robot for Rice Cultivation: Weed Suppression and Posture Control
Authors: Shohei Nakai, Yasuhiro Yamada
Abstract:
Weed suppression and weeding are necessary measures for rice cultivation. Weed suppression precedes the process of weeding. It means suppressing the growth of young weeds and creating a weed-less environment. If we suppress the growth of weeds, we can reduce the number of weeds in a paddy field. This would result in a reduction of the weeding work load. In this paper, we will show how we developed a weed suppression robot for the purpose of reducing the weeding work load. The robot has a laser range finder for autonomous mobility and a robot arm for weed suppression. It travels along the rice rows without stepping on and injuring the rice plants in a paddy field. The robot arm applies force to the weed seedlings and thereby suppresses the growth of weeds. This paper will explain the methodology of the autonomous mobile, the experiment in weed suppression, and the method of controlling the robot’s posture on uneven ground.
Keywords: Mobile robot, Paddy field, Robot arm, Weed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28323050 Novel Mobile Climbing Robot Agent for Offshore Platforms
Authors: Akbar F. Moghaddam, Magnus Lange, Omid Mirmotahari, Mats Høvin
Abstract:
To improve HSE standards, oil and gas industries are interested in using remotely controlled and autonomous robots instead of human workers on offshore platforms. In addition to earlier reason this strategy would increase potential revenue, efficient usage of work experts and even would allow operations in more remote areas. This article is the presentation of a custom climbing robot, called Walloid, designed for offshore platform topside automation. This 4 arms climbing robot with grippers is an ongoing project at University of Oslo.Keywords: Climbing Robots, Mobile Robots, Offshore Robotics, Offshore Platforms, Automation, Inspection, Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21083049 Modelling of a Direct Drive Industrial Robot
Authors: C. Perez, O. Reinoso, N. Garcia, J. M. Sabater, L. Gracia
Abstract:
For high-speed control of robots, a good knowledge of system modelling is necessary to obtain the desired bandwidth. In this paper, we present a cartesian robot with a pan/tilt unit in end-effector (5 dof). This robot is implemented with powerful direct drive AC induction machines. The dynamic model, parameter identification and model validation of the robot are studied (including actuators). This work considers the cartesian robot coupled and non linear (contrary to normal considerations for this type of robots). The mechanical and control architecture proposed in this paper is efficient for industrial and research application in which high speed, well known model and very high accuracy are required.
Keywords: Robot modelling, parameter identification and validation, AC servo-motors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15643048 Robotics System Design for Assembly and Disassembly Process
Authors: Nina Danišová, Roman Ružarovský, Karol Velíšek
Abstract:
In this paper is described a new conception of the Cartesian robot for automated assembly and also disassembly process. The advantage of this conception is the utilization the Cartesian assembly robot with its all peripheral automated devices for assembly of the assembled product. The assembly product in the end of the lifecycle can be disassembled with the same Cartesian disassembly robot with the use of the same peripheral automated devices and equipment. It is a new approach to problematic solving and development of the automated assembly systems with respect to lifecycle management of the assembly product and also assembly system with Cartesian robot. It is also important to develop the methodical process for design of automated assembly and disassembly system with Cartesian robot. Assembly and disassembly system use the same Cartesian robot input and output devices, assembly and disassembly units in one workplace with different application. Result of design methodology is the verification and proposition of real automated assembly and disassembly workplace with Cartesian robot for known verified model of assembled actuator.Keywords: Cartesian robot, design methodology, assembly, disassembly, pneumatic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29523047 Design of an Artificial Intelligence Based Automatic Task Planner or a Robotic System
Authors: T. C. Manjunath, C. Ardil
Abstract:
This paper deals with the design and the implementation of an automatic task planner for a robot, irrespective of whether it is a stationary robot or a mobile robot. The aim of the task planner nothing but, they are planning systems which are used to plan a particular task and do the robotic manipulation. This planning system is embedded into the system software in the computer, which is interfaced to the computer. When the instructions are given using the computer, this is transformed into real time application using the robot. All the AI based algorithms are written and saved in the control software, which acts as the intelligent task planning system.Keywords: AI, Robot, Task Planner, RT, Algorithm, Specs, Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6203046 Design and Implementation of a Control System for a Walking Robot with Color Sensing and Line Following Using PIC and ATMEL Microcontrollers
Authors: Ibraheem K. Ibraheem
Abstract:
The aim of this research is to design and implement line-tracking mobile robot. The robot must follow a line drawn on the floor with different color, avoids hitting moving object like another moving robot or walking people and achieves color sensing. The control system reacts by controlling each of the motors to keep the tracking sensor over the middle of the line. Proximity sensors used to avoid hitting moving objects that may pass in front of the robot. The programs have been written using micro c instructions, then converted into PIC16F887 ATmega48/88/168 microcontrollers counterparts. Practical simulations show that the walking robot accurately achieves line following action and exactly recognizes the colors and avoids any obstacle in front of it.
Keywords: Color sensing, H-bridge, line following, mobile robot, PIC microcontroller, obstacle avoidance, phototransistor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32483045 Implementing a Visual Servoing System for Robot Controlling
Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari
Abstract:
Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16703044 Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph
Authors: Sumit Kumar, Sunil Kumar, Chandan Deep Singh
Abstract:
This paper presents modeling and simulation of flexible robot in an underwater environment. The underwater environment completely contrasts with ground or space environment. The robot in an underwater situation is subjected to various dynamic forces like buoyancy forces, hydrostatic and hydrodynamic forces. The underwater robot is modeled as Rayleigh beam. The developed model further allows estimating the deflection of tip in two directions. The complete dynamics of the underwater robot is analyzed, which is the main focus of this investigation. The control of robot trajectory is not discussed in this paper. Simulation is performed using Symbol Shakti software.Keywords: Bond graph modeling, dynamics. modeling, Rayleigh beam, underwater robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30143043 A Robotic Cube to Preschool Children for Acquiring the Mathematical and Colours Concepts
Authors: Ahmed Amin Mousa, Tamer M. Ismail, M. Abd El Salam
Abstract:
This work presents a robot called Conceptual Robotic Cube, CR-Cube. The robot can be used as an educational tool for children from the age of three. It has a cube shape attached with a camera colours sensor. In addition, it contains four wheels to move smoothly. The researchers prepared a questionnaire to measure the efficiency of the robot. The design and the questionnaire was presented to 11 experts who agreed that the robot is appropriate for learning numbering and colours for preschool children.
Keywords: CR-Cube, robotic cube, conceptual robot, conceptual cube, colour concept, early childhood education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11893042 Development of Automatic Guided Mobile Robot Using Magnetic Position Meter
Authors: Geun-Mo Kim, Young-Jae Ryoo
Abstract:
In this paper, an automatic guided mobile robot using a new magnetic position meter is described. In order to measure the lateral position of a mobile robot, a new magnetic position meter is developed. The magnetic position meter can detect the position of a magnetic wire on the center of road. A mobile robot in designed with a sensing system, a steering system and a driving system. The designed mobile robot is tested to verify the performance of automatic guidance.
Keywords: Autonomous vehicle, magnetic position meter, steering, magnet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16533041 Predictive Model of Sensor Readings for a Mobile Robot
Authors: Krzysztof Fujarewicz
Abstract:
This paper presents a predictive model of sensor readings for mobile robot. The model predicts sensor readings for given time horizon based on current sensor readings and velocities of wheels assumed for this horizon. Similar models for such anticipation have been proposed in the literature. The novelty of the model presented in the paper comes from the fact that its structure takes into account physical phenomena and is not just a black box, for example a neural network. From this point of view it may be regarded as a semi-phenomenological model. The model is developed for the Khepera robot, but after certain modifications, it may be applied for any robot with distance sensors such as infrared or ultrasonic sensors.
Keywords: Mobile robot, sensors, prediction, anticipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448