
 

 

  
Abstract—The research on two-wheels balancing robot has 

gained momentum due to their functionality and reliability when 
completing certain tasks. This paper presents investigations into the 
performance comparison of Linear Quadratic Regulator (LQR) and 
PID-PID controllers for a highly nonlinear 2–wheels balancing robot. 
The mathematical model of 2-wheels balancing robot that is highly 
nonlinear is derived. The final model is then represented in state-
space form and the system suffers from mismatched condition. Two 
system responses namely the robot position and robot angular 
position are obtained. The performances of the LQR and PID-PID 
controllers are examined in terms of input tracking and disturbances 
rejection capability. Simulation results of the responses of the 
nonlinear 2–wheels balancing robot are presented in time domain. A 
comparative assessment of both control schemes to the system 
performance is presented and discussed. 
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I. INTRODUCTION 
HE research on two-wheeled balancing robot has gained 
momentum over the last decade due to the nonlinear and 

unstable dynamics system. Various control strategies had been 
proposed by numerous researchers to control the two-wheeled 
balancing robot such that the robot able to balance itself. Two  
wheels balancing  robot  is  a  good  platform  for  researchers  
to investigate  the  efficiency  of  various  controllers  in  
control system. The research on two wheels balancing robot is 
based on inverted pendulum model.  Thus,  a  two wheels 
balancing robot needs a good controller  to control itself  in  
upright  position  without  the  needs  from  outside.  

Motion of two wheels balancing robot is governed by 
under-actuated configuration, i.e., the number of control 
inputs is less than the number of degrees of freedom to be 
stabilized [1], which makes it difficult to apply the 
conventional robotics approach for controlling the systems. 
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Due to these reasons, increasing effort has been made towards 
control designs that guarantee stability and robustness for 
mobile wheeled inverted pendulums. Although two wheels 
balancing robot are intrinsically nonlinear and their dynamics 
will be described by nonlinear differential equations, it is 
often possible to obtain a linearized model of the system. If 
the system operates around an operating point, and the signals 
involved are small signals, a linear model that approximates 
the nonlinear system in the region of operation can be 
obtained. Several techniques for the design of controllers and 
analysis techniques for linear systems were applied. In [2], 
motion control was proposed using linear state-space model. 
In [3], dynamics was derived using a Newtonian approach and 
the control was design by the equations linearized around an 
operating point. In [4], the dynamic equations were studied, 
with the balancing robot pitch and the rotation angles of the 
two wheels as the variables of interest, and a linear controller 
was designed for stabilization under the consider of its 
robustness in [5]. In [6], a linear stabilizing controller was 
derived by a planar model without considering vehicle yaw. 
The above control laws are designed on the linearized 
dynamics which only exhibits desirable behavior around the 
operating point, and do not have global applicability. In [7], 
the exact dynamics of two wheels inverted pendulum was 
investigated, and linear feedback control was developed on 
the dynamic model. In [8], a two-level velocity controller via 
partial feedback linearized and a stabilizing position controller 
were derived; however, the controller design is not robust 
with respect to parameter uncertainties. In [9], a controller 
using sliding mode approach was proposed to ensure 
robustness versus parameter uncertainties for controlling both 
the position and the orientation of the balancing robot.   

The mathematical model is established through a modeling 
process where the system is identified based on the 
conservation laws and property laws. This process is crucial 
since a controller is design solely based on this mathematical 
model. Thus, an accurate equation must be derived in order 
for the controller to response accordingly.  
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This paper presents investigations of performance 
comparison between conventional (PID-PID) and modern 
control (Linear Quadratic Regulator) schemes for a two 
wheels balancing robot. The mathematical model of the two 
wheels balancing robot system is presented in differential 
equation form. The dynamic model of the system with the 
permanent magnet DC motors dynamic included is derived 
based on [3] and [10]. Performances of both control strategy 
with respect to balancing robot outputs angular position θ and 
linear position x are examined. Comparative assessment of 
both control schemes to the two balancing robot system 
performance is presented and discussed.  

II. DYNAMIC MODEL 
Modeling  is  the  process  of  identifying  the principal  

physical  dynamic  effects  to  be considered  in  analyzing  a  
system,  writing  the differential  and  algebraic  equations  
from  the conservative  laws  and  property  laws  of  the 
relevant discipline, and reducing the equations to a convenient 
differential equation model. This section provides a 
description on the modeling of the two wheels balancing 
robot, as a basis of a simulation environment for development 
and assessment of both control schemes. The robot with its 
three degrees of freedom is able to linearly move which is 
characterized by position  x, able to rotate around the y-axis 
(yaw) with associated angle  δ and able to rotate around z-axis 
(pitch) where the movement is described by angle θ. List of 
parameters for the two wheels balancing robot are shown in 
Table I. These parameters are based on the project conducted 
by Ooi (2003) as stated by [10]. The inputs of the system are 
the voltages VaR and VaL which both are applied to the two 
motors which located on right side and left side of the robot as 
shown in Fig. 1. In order to obtain the dynamic model of the 
balancing robot some assumptions and limitations are 
introduced: 
1) Motor inductance and friction on the motor armature is 

neglected.  
2) The wheels of the robot will always stay in contact with 

the ground.  
3) There is no slip at the wheels.  
4) Cornering forces are also negligible.  

 
Fig. 2 shows a free body diagram of the balancing robot 

which contributed to the nonlinear dynamic equations of the 
system. Equation (1) represents linear acceleration in x 
direction, equation (2) represents angular acceleration about y-
axis and equation (3) represents angular acceleration about z-
axis. 

 

 

 
 

Fig. 1 A mobile balancing robot (Grasser et al., 2002)  
 

 
Fig. 2 Free body diagram of balancing robot 

 
As can be seen from equations (1), (2), and (3), all 

nonlinear terms are remain in the equations. All these 
equations are used to design the proposed controllers which 
will be described in the section III. 

 

 

TABLE I 
LIST OF PARAMETERS OF TWO-WHEELS BALANCING ROBOT BASED ON [11] 

Symbol Parameter Value 

D distance between 
contact patches of  
the wheels 

            0.2 m 

g gravitational force             9.81 m.s-2

Jp chassis’s inertia             0.0041 kg.m2

Jpδ chassis’s inertia during 
rotation  

            0.00018  kg.m2 
 

Jw wheel’s inertia             0.000039 kg.m2 
ke back emf constant             0.006087 Vs/rad 
km motor torque constant             0.006123 Nm/A 
l distance between 

center of the wheels 
and the robot’s CG 

            0.07 m 

Mp body’s mass             1.13 kg 
Mw wheel’s mass             0.03 kg 
R nominal terminal 

resistance  
            3 Ω 

r wheel’s radius             0.051 m 
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The symbols of α, β, and γ in equations (1), (2), and (3) are 

defined as in equation (4), (5), and (6): 
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w M
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2
2α  (4)
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θαγ

β
222 coslM p−

=   (5)
 

2lMJ pp +=γ  (6) 

III. CONTROLLER DESIGN & SIMULATION 
In this section, two control schemes (LQR and PID) are 

proposed and described in detail. Furthermore, the following 
design requirements have been made to examine the 
performance of both control strategies.  
1) The system overshoot (%OS) of robot position, x is to be 

at most 25%. 
2) The Rise time (Tr) of robot position, x less than 5 s.  
3) The settling time (Ts) of robot position, x and robot angle 

θ is to be less than 10 seconds. 
4) Steady-state error is within 2% of the initial value.  

 

A. PID Controller   
PID stands for Proportional-Integral-Derivative. This is a 

type of feedback controller whose output, a control variable 
(CV), is generally based on the error (e) between defined set 
point (SP) and some measured process variable (PV). Each 
element of the PID controller refers to a particular action 
taken on the error. In order to demonstrate the performance of 
the PID controller in locating the balancing robot to its 
desired position and angle, the collocated sensor signal of the 
position of the robot about roll axis, x(s) and angular position 
of the robot about yaw axis θ(s) are fed back and compared to 
the reference position, xf(s) and angle θf(s) respectively. 
Initially, the angular position of the robot which is position 
about pitch axis is set 50 degrees or 0.8727 radians. In this 
study, two PID controllers are required to control the position 
on the roll axis and the angular position about the yaw axis. 
The position and angular position errors are regulated through 
the proportional, integral and derivative gain for each PID. 
Block diagram of the PID controller is shown in Fig. 3, where 
u1(s) and u2(s) represent the applied voltage at the right motor 
and left motor respectively. Both of the inputs of the 
balancing robot are limited to 20 volts to –20 volts. The 
control signal u1(s) and u2(s) in Fig. 3 can be represented as in 
equations (7) and (8) respectively:  
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where s is the Laplace variable. Hence the closed-loop transfer 
function is obtained as in equation (9) and (10). 
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In this paper, the Ziegler-Nichols approach is utilized to 

design both PID controllers. Analyses the tuning process of 
the proportional, integral and derivative gains using Ziegler-
Nichols technique shows that the optimum response of PID 
controller for controlling linear position is achieved by setting 
KP1 = -8, KI1 = -0.921 and KD1 = -6, while for controlling 
angular position, KP2 = -63, KI2 = -60 and KD2 = -11. All the 
PID1 and PID2 controller parameters must be tuned 
simultaneously to achieve the best responses as desired.  
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Fig. 3 Block diagram of PID controller 
 

B. LQR Controller   
LQR is a method in modern control theory that uses state-

space approach to analyze such a system. Using state-space 
methods it is relatively simple to work with a multi-output 
system. The system can be stabilized using full state feedback. 
The schematic of this type of control system is shown in Fig. 
4. 

         
 

Fig. 4 The LQR control structure 
 

For a LTI system, the technique involves choosing a control 
law )(xu ψ=  which stabilizes the origin while minimizing 
the quadratic cost function which can be presented as in 
equation (11). 

 

∫
∞

+=
0

)()()()( dttRututQxtxJ TT                                   (11) 

where 0≥= TQQ  and 0>= TRR . The term “linear-
quadratic” refers to the linear system dynamics and the 
quadratic cost function. A famous and somewhat surprising 
result due to Kalman is that the control law which minimizes 
J always takes the form Kxxu == )(ψ . The optimal 
regulator for a LTI system with respect to the quadratic cost 
function above is always a linear control law. With this 
observation in mind, the closed-loop system takes the states 
space form as represented in equation (12). 
 

xBKAx )( −=&                                                                  (12) 
Substituting the control law into equation (11), the cost 
function J is represented as in equation (13). 
 

∫
∞

−−+=
0

))(())(()()( dttKxRtKxtQxtxJ TT                        (13) 

Equation (13) can be further simplified as represented 
equation (14). 

∫
∞

+=
0

)()()( dttxRKKQtxJ TT                                          (14) 

In designing LQR controller, LQR function in matlab m-
file can be used to determine the value of the vector K which 
determines the feedback control law. This is done by choosing 
two parameter values, input R and Q=C'xC where C is from 
state equation of the linearized model. The controller can be 
tuned by changing the nonzero elements in Q matrix which is 
done in m-file code. Consequently, by tuning the values of 
nonzero elements in matrix Q as shown in (15) and matrix R 
as shown in (16), the values of matrix K are obtained as 
represented in equation (17). 

 
Q = [1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 100 0 0 0;  
 

        0 0 0 100 0 0;  0 0 0 0 0.1 0;  0 0 0 0 0 0.01]            (15) 
 

R = [1 0; 0 1]                                                                    (16) 
 

The matrix R and matrix Q must be properly tuned to 
minimized the quadratic cost function as represented in (14). 

 
K=[–5.9000  –6.8040  –34.1774  –7.9286  –1.7071  –8.0903; 
 
–5.9000  –6.8040  –34.1774  –7.9286  –0.7071  –7.0903]  (17) 
 
The matrix K is the LQR controller parameter which 
determines feedback control law Kxxu == )(ψ . 

IV. RESULT AND ANALYSIS 
In this section, the simulation results of the proposed 

controller, which is performed on the model of a two wheels 
balancing robot are presented. Comparative assessment of 
both control strategies to the system performance are also 
discussed in details in this section. 

Two wheels balancing robot systems with LQR and PID 
controller block diagram produced two responses, angular 
position θ and linear position x. As stated earlier, the initial 
value of the angular position θ of the balancing robot was set 
to 0.5 radians. It means that the initial condition of the robot is 
very unstable. Fig. 5 shows the comparison of the balancing 
robot linear position response between LQR and PID 
controller graphically. In this figure, the response for the 
linear position of the robot with PID controller is represented 
by straight line or blue color line and the response for the 
linear position of the robot with LQR controller is represented 
by dotted line or red color line. Fig. 5 shows that both of the 
controllers are capable to control the linear position of the 
nonlinear two wheels balancing robot. 
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Fig. 5 Two-Wheel Balancing Robot Linear Position Response 
 

Table II shows the summary of the performance 
characteristics of the balancing robot linear position between 
LQR and PID controller quantitatively. Based on the data 
tabulated in Table II, LQR has the fastest settling time of 2.38 
seconds while PID has the slowest settling time of 2.68 
seconds. An extra of 0.3 seconds is required for the PID 
controller balancing robot to balance itself. Similarly, for the 
maximum overshoot, LQR controller has the best overshoot 
which is the lowest overshoot between two controllers. The 
maximum displacement of the balancing robot when LQR 
control signal applied to the system is 0.73 meters while 
maximum displacement of the balancing robot when PID 
control signal applied to the system is 0.77 meters. A distance 
of minimum 0.04 meters is required for the PID controller 
balancing robot to balance itself. Despite the large initial 
values for the displacement, the proposed LQR controller is 
able to bring itself to the vertical position. In term of the rise 
time, balancing robot with PID controller has the fastest rise 
time 0.37 seconds while balancing robot with LQR controller 
needs an extra time of 0.02 seconds to rise from 10% to the 
90% of the initial value.  In term of steady state error, both of 
the controllers had shown very outstanding performance by 
giving zero error at time 6 seconds and more. The responses 
of the balancing robot linear position have acceptable 
overshoot and undershoot.  
 Fig. 6 shows the balancing robot with LQR and PID 

controller angular position responses. It shows that the result 
has got similar pattern and not much different. 
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Fig. 6 Two-Wheels Balancing Robot Angular Position 

Response 
 

The initial value of the balancing robot angular position is 
0.5 radians. The robot needs to balance itself by eliminating 
the angular position so that the body of the robot remains 
vertically straight in upright position. Fig. 6 shows that both 
of the LQR and PID controllers are capable of controlling the 
nonlinear unstable balancing robot.   
 Table III shows the summary of the performance 
characteristics of the balancing robot angular position between 
LQR and PID controller quantitatively. Based on the data 
tabulated in Table III, PID has the fastest settling time of 2.45 
seconds while LQR has the slowest settling time of 2.59 
seconds. An extra time of 0.14 seconds is required for the PID 
controller balancing robot to balance itself. In contrast, for the 
maximum undershoot, LQR controller has the best undershoot 
which is the lowest undershoot between two controllers. The 
maximum angular displacement of the balancing robot when 
LQR control signal applied to the system is –0.29 radians 
while maximum angular displacement of the balancing robot 
when PID control signal applied to the system is –0.38 
radians. An extra angle of minimum 0.01 meters is required 

TABLE II 
SUMMARY OF PERFORMANCE CHARACTERISTICS OF THE BALANCING 

ROBOT LINEAR POSITION BETWEEN LQR AND PID 

Time Response 
Spesification LQR 

 
PID 

 
Rise Time 0.39 sec 0.37sec 
   
Settling Time 2.38 sec 2.68 sec 
   
Steady state error 0.00 0.00 
   
Maximum  overshoot 0.73meter 0.77 meter 

TABLE III 
SUMMARY OF PERFORMANCE CHARACTERISTICS OF THE BALANCING 

ROBOT ANGULAR POSITION BETWEEN LQR AND PID 

Time Response 
Spesification LQR 

 
PID 

 
Rise Time 0.22 sec 0.26sec 
   
Settling Time 2.59 sec 2.45 sec 
   
Steady state error 0.00 0.00 
   
Maximum  undershoot 0.29radians 0.38 radians 
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for the PID controller balancing robot to balance itself. 
Despite the large initial values for the displacement, the 
proposed LQR controller is able to bring itself to the vertical 
position. In term of the rise time, balancing robot with LQR 
controller has the fastest rise time 0.22 seconds while 
balancing robot with PID controller needs an extra time of 
0.04 seconds to rise from 10% to the 90% of the initial value.  
In term of steady state error, both of the controllers had shown 
very outstanding performance by giving zero error at time 4 
seconds and more.  

The responses of the balancing robot angular position have 
acceptable overshoot and undershoot. Performance 
characteristics for linear and angular position represented in 
bar chart form are shown in Fig. 7 and Fig. 8 respectively. 
 

0.39

2.38

0.73

0.37

2.68

0.77

0

0.5

1

1.5

2

2.5

3

Tr Ts Max. OS

LQR PID
 

Fig. 7 Performance characteristics for linear position 
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Fig. 8 Performance characteristics for angular position 
 
 
 
 

V.  CONCLUSION 
In this paper, two controllers such as LQR and PID are 

successfully designed. Based on the results and the analysis, a 
conclusion has been made that both of the control method, 
modern controller (LQR) and conventional controller (PID) 
are capable of controlling the nonlinear two wheels balancing 
robot angular and linear position. All the successfully 
designed controllers were compared. The responses of each 
controller were plotted in one window and are summarized in 
Table II and Table III. Simulation results and bar charts in 
Fig. 7 and Fig. 8 show that LQR controller has better 
performance compared to PID controller in controlling the 
nonlinear balancing robot system. Further improvement need 
to be done for both of the controllers. PID controller should be 
improved so that the maximum overshoot and maximum 
undershoot for the linear and angular positions do not have 
very high range as required by the design criteria. On the 
other side, LQR controller can be improved so that it’s settling 
time for angular position might be reduced as faster as PID 
controller.  
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