Search results for: electrodes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 121

Search results for: electrodes

91 Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy

Authors: Yusmeeraz Yusof, Yoshiyuki Yanagimoto, Shigeyasu Uno, Kazuo Nakazato

Abstract:

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.

Keywords: Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3087
90 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos

Abstract:

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.

Keywords: Counter electrodes, dye-sensitized solar cells, quasisolid state electrolyte, transparency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
89 Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor

Authors: E. Gnapowski, S. Gnapowski

Abstract:

This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.

Keywords: Input power, mesh electrodes, onset voltage, porous dielectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
88 Decolorization and COD Removal of Palm Oil Mill Wastewater by Electrocoagulation

Authors: K. Sontaya, B. Pitiyont, V. Punsuvon

Abstract:

The objective of this study is to investigate the performance of the electrocoagulation process for color and COD removal in palm oil wastewater using a 10 L batch reactor. Iron was used as electrodes and the distance between electrodes was 2 cm. The effects of operating parameters: current voltage (6, 12 and 18 volt), reaction time (5, 15, 30, 45 and 60 min) and initial pH (4 and 9) of treatment efficiency were examine. The result showed that decolorization and COD removal efficiency increased with the increase in current voltage and reaction time. The proper condition for decolorization achieved at initial pH 4 and 9 were current voltage of 12 volt, reaction time 30 min. The decolorization efficiency reached 90.4% and 88.9%, respectively. COD removal was achiveved at current voltage 12 volt, reaction time 15 min. COD removal efficiency was 89.2 % and 83.0%, respectively. From the results, to show electrocoagulation process can treat palm oil mill wastewater in both acidic and basic condition at high efficiency for color and COD removal. Consequently, electrocoagulation process can be used or applied as a post-treatment step to improve the quality of the final discharge in term of color and residual COD removal.

Keywords: COD removal, decolorizaton, electrocoagulation, iron electrode, palm oil mill wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3176
87 Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources

Authors: Md R. Bashar, Yan Li, Peng Wen

Abstract:

This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.

Keywords: Alzheimer's disease (AD), brain tissue distortion, electroencephalogram, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
86 Carbon-Based Electrochemical Detection of Pharmaceuticals from Water

Authors: M. Ardelean, F. Manea, A. Pop, J. Schoonman

Abstract:

The presence of pharmaceuticals in the environment and especially in water has gained increasing attention. They are included in emerging class of pollutants, and for most of them, legal limits have not been set-up due to their impact on human health and ecosystem was not determined and/or there is not the advanced analytical method for their quantification. In this context, the development of various advanced analytical methods for the quantification of pharmaceuticals in water is required. The electrochemical methods are known to exhibit the great potential for high-performance analytical methods but their performance is in direct relation to the electrode material and the operating techniques. In this study, two types of carbon-based electrodes materials, i.e., boron-doped diamond (BDD) and carbon nanofiber (CNF)-epoxy composite electrodes have been investigated through voltammetric techniques for the detection of naproxen in water. The comparative electrochemical behavior of naproxen (NPX) on both BDD and CNF electrodes was studied by cyclic voltammetry, and the well-defined peak corresponding to NPX oxidation was found for each electrode. NPX oxidation occurred on BDD electrode at the potential value of about +1.4 V/SCE (saturated calomel electrode) and at about +1.2 V/SCE for CNF electrode. The sensitivities for NPX detection were similar for both carbon-based electrode and thus, CNF electrode exhibited superiority in relation to the detection potential. Differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques were exploited to improve the electroanalytical performance for the NPX detection, and the best results related to the sensitivity of 9.959 µA·µM-1 were achieved using DPV. In addition, the simultaneous detection of NPX and fluoxetine -a very common antidepressive drug, also present in water, was studied using CNF electrode and very good results were obtained. The detection potential values that allowed a good separation of the detection signals together with the good sensitivities were appropriate for the simultaneous detection of both tested pharmaceuticals. These results reclaim CNF electrode as a valuable tool for the individual/simultaneous detection of pharmaceuticals in water.

Keywords: Boron-doped diamond electrode, carbon nanofiber-epoxy composite electrode, emerging pollutants, pharmaceuticals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
85 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: Brain-machine interface, EEGLAB, emotiv EEG neuroheadset, openViBE, simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
84 Dynamics Characterizations of Dielectric Electro-Active Polymer Pull Actuator for Vibration Control

Authors: A. M. Wahab, E. Rustighi

Abstract:

Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.

Keywords: Dielectric Electro-active Polymer, Pull Actuator, Static, Dynamic, Electromechanical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
83 Production of Size-Selected Tin Nanoclusters for Device Applications

Authors: Ahmad I. Ayesh

Abstract:

This work reports on the fabrication of tin nanoclusters by sputtering and inert-gas condensation inside an ultra-high vacuum compatible system. This technique allows to fine tune the size and yield of nanoclusters by controlling the nanocluster source parameters. The produced nanoclusters are deposited on SiO2/Si substrate with pre-formed electrical electrodes to produce a nanocluster device. Those devices can be potentially used for gas sensor applications.

Keywords: Tin, nanoclusters, inert-gas condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
82 High Voltage Driver Design for Actuating a MOEMS Mirror Array

Authors: M. Lenzhofer, D. Holzmann, A. Tortschanoff

Abstract:

In this paper we present a new multichannel high voltage driver box to connect up to six MOEMS mirror devices to it that have resonant and also quasistatically driven actuating electrodes. It is possible to drive all resonant axes synchronously while the amplitude of them can individually be controlled by separate microcontrollers that also operate the quasistatic axes. Circuit simulations are compared with the measurements done on the real system and also show the robust driving performance of a MOEMS mirror.

Keywords: MOEMS, scanner mirror, electrostatic driver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
81 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: Anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
80 An Immunosensor for Bladder Cancer Screening

Authors: Congo Tak Shing Ching, Hong-Sheng Chen, Tai-Ping Sun, Hsiu-Li Shieh

Abstract:

Nuclear matrix protein 22 (NMP22) is a FDA approved biomarker for bladder cancer. The objective of this study is to develop a simple NMP22 immumosensor (NMP22-IMS) for accurate measurement of NMP22. The NMP22-IMS was constructed with NMP22 antibody immobilized on screen-printed carbon electrodes. The construction procedures and antibody immobilization are simple. Results showed that the NMP22-IMS has an excellent (r2³0.95) response range (20 – 100 ng/mL). In conclusion, a simple and reliable NMP22-IMS was developed, capable of precisely determining urine NMP22 level.

Keywords: Bladder Cancer, Immunosensor, Impedance, NMP22

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
79 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
78 Fabrication and Study of Nickel Phthalocyanine based Surface Type Capacitive Sensors

Authors: Mutabar Shah, Muhammad Hassan Sayyad, Khasan S. Karimov

Abstract:

Thin films of Nickel phthalocynine (NiPc) of different thicknesses (100, 150 and 200 nm) were deposited by thermal evaporator on glass substrates with preliminary deposited aluminum electrodes to form Al/NiPc/Al surface-type capacitive humidity sensors. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. It was observed that the capacitance value increases nonlinearly with increasing humidity level. All measurements were taken at room temperature.

Keywords: Capacitive sensor, Humidity, Nickel phthalocyanine, Organic semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
77 Study of Parameters Affecting the Electrostatic Attractions Force

Authors: Vahid Sabermand, Yousef Hojjat, Majid Hasanzadeh

Abstract:

This paper contains 2 main parts. In the first part of paper we simulated and studied three types of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode length and methods of improvement of adhesion force by changing these values.

Keywords: Electrostatic force, electrostatic adhesion, electrostatic chuck, electrostatic application in industry, Electroadhesive grippers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2802
76 Computational Simulation of Imploding Current Sheath Trajectory at the Radial Phase of Plasma Focus Performance

Authors: R. Amrollahi, M. Habibi

Abstract:

When the shock front (SF) hits the central electrode axis of plasma focus device, a reflected shock wave moves radially outwards. The current sheath (CS) results from ionization of filled gas between two electrodes continues to compress inwards until it hits the out-going reflected shock front. In this paper the Lagrangian equations are solved for a parabolic shock trajectory yielding a first and second approximation for the CS path. To determine the accuracy of the approximation, the same problem is solved for a straight shock.

Keywords: Radial compression, Shock wave trajectory, Current sheath, Slog model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
75 Triboelectric Separation of Binary Plastic Mixture

Authors: M. Saeki

Abstract:

This paper presents the results of an experimental study on the performance of a triboelectric separator of plastic mixtures used for recycling. The separator consists of four cylindrical electrodes. The principle behind the separation technique is based on the difference in the Coulomb force acting on the plastic particles after triboelectric charging. The separation of mixtures of acrylonitrile butadiene styrene (ABS) and polystyrene (PS) using this method was studied. The effects of the triboelectric charging time and applied voltage on the separation efficiency were investigated. The experimental results confirm that it is possible to obtain a high purity and recovery rate for the initial compositions considered in this study.

Keywords: Coulomb force, recycling, triboelectric separator, waste plastics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858
74 Microcontroller Based EOG Guided Wheelchair

Authors: Jobby K. Chacko, Deepu Oommen, Kevin K. Mathew, Noble Sunny, N. Babu

Abstract:

A new cost effective, eye controlled method was introduced to guide and control a wheel chair for disable people, based on Electrooculography (EOG). The guidance and control is effected by eye ball movements within the socket. The system consists of a standard electric wheelchair with an on-board microcontroller system attached. EOG is a new technology to sense the eye signals for eye movements and these signals are captured using electrodes, signal processed such as amplification, noise filtering, and then given to microcontroller which drives the motors attached with wheel chair for propulsion. This technique could be very useful in applications such as mobility for handicapped and paralyzed persons.

Keywords: Electrooculography, Microcontroller, Signal processing, Wheelchair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5599
73 Application of Formyl-TIPPCu (II) for Temperature and Light Sensing

Authors: Dil Nawaz Khan, M. H. Sayyad, Muhammad Yaseen, Munawar Ali Munawar, Mukhtar Ali

Abstract:

Effect of temperature and light was investigated on a thin film of organic semiconductor formyl-TIPPCu(II) deposited on a glass substrate with preliminary evaporated gold electrodes. The electrical capacitance and resistance of the fabricated device were evaluated under the effect of temperature and light. The relative capacitance of the fabricated sensor increased by 4.3 times by rising temperature from 27 to 1870C, while under illumination up to 25000 lx, the capacitance of the Au/formyl-TIPPCu(II)/Au photo capacitive sensor increased continuously by 13.2 times as compared to dark conditions.

Keywords: formyl-TIPPCu(II), Organic semiconductor, Photocapacitance, Polarizability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
72 Investigation of 5,10,15,20-Tetrakis(3-,5--Di-Tert-Butylphenyl)Porphyrinatocopper(II) for Electronics Applications

Authors: Zubair Ahmad, M. H. Sayyad, M. Yaseen, M. Ali

Abstract:

In this work, an organic compound 5,10,15,20- Tetrakis(3,5-di-tertbutylphenyl)porphyrinatocopper(II) (TDTBPPCu) is studied as an active material for thin film electronic devices. To investigate the electrical properties of TDTBPPCu, junction of TDTBPPCu with heavily doped n-Si and Al is fabricated. TDTBPPCu film was sandwiched between Al and n-Si electrodes. Various electrical parameters of TDTBPPCu are determined. The current-voltage characteristics of the junction are nonlinear, asymmetric and show rectification behavior, which gives the clue of formation of depletion region. This behavior indicates the potential of TDTBPPCu for electronics applications. The current-voltage and capacitance-voltage techniques are used to find the different electronic parameters.

Keywords: P-type, organic semiconductor, Electricalcharacteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
71 Radiation Heat Transfer Effect in Solid Oxide Fuel Cell: Application of the Lattice Boltzmann Method

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

The radiation effect within the solid anode, electrolyte, and cathode SOFC layers problem has been investigated in this paper. Energy equation is solved by the Lattice Boltzmann method (LBM). The Rosseland method is used to model the radiative transfer in the electrodes. The Schuster-Schwarzschild method is used to model the radiative transfer in the electrolyte. Without radiative effect, the found results are in good agreement with those published. The obtained results show that the radiative effect can be neglected.

Keywords: SOFC, lattice Boltzmann method, conduction, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
70 Highly Sensitive Label Free Biosensor for Tumor Necrosis Factor

Authors: Tze Sian Pui, Tushar Bansal, Patthara Kongsuphol, Sunil K. Arya

Abstract:

We present a label-free biosensor based on electrochemical impedance spectroscopy for the detection of proinflammatory cytokine Tumor Necrosis Factor (TNF-α). Secretion of TNF-α has been correlated to the onset of various diseases including rheumatoid arthritis, Crohn-s disease etc. Gold electrodes were patterned on a silicon substrate and self assembled monolayer of dithiobis-succinimidyl propionate was used to develop the biosensor which achieved a detection limit of ~57fM. A linear relationship was also observed between increasing TNF-α concentrations and chargetransfer resistance within a dynamic range of 1pg/ml – 1ng/ml.

Keywords: Tumor necrosis factor, electrochemical impedance spectroscopy, label free, self assembled monolayer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
69 Morphology and Magnetic Properties of Fe3O4 and Au@Fe3O4 Nanoparticles Synthesized by Pulsed Plasma in Liquid

Authors: Zhazgul Kelgenbaeva, Emil Omurzak, Saadat Sulaimankulova, Tsutomu Mashimo

Abstract:

Spherical shaped magnetite (Fe3O4) and Au@Fe3O4 nanoparticles were successfully synthesized from Fe electrodes immersed in water with CTAB surfactant and HAuCl4 solution using simple method-pulsed plasma in liquid, without the use of dopants or special conditions for stabilization. Vibrating sample magnetometer indicated ferromagnetic behavior of particles at room temperature with coercivity and saturation magnetization of (Hc=105 Oe, Ms=6.83 emu/g) for Fe3O4 and (Hc=175, Ms=3.56emu/g) for Au@Fe3O4 nanoparticles. Structure and morphology of nanoparticles were characterized by X-ray Diffraction analysis and HR-TEM measurements. The cytotoxicity of nanoparticles was indicated using a XTT assay to be very low (cell viability: 98-89% with Fe3O4 and 99-91% for Au@Fe3O4 NPs).

Keywords: Magnetite, Gold coated magnetite, Nanoparticles, Pulsed Plasma in Liquid, Cytotoxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
68 Plasma Arc Burner for Pulverized Coal Combustion

Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava

Abstract:

Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.

Keywords: Coal combustion, plasma arc, plasma torches, pulverized coal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
67 Control Signal from EOG Analysis and Its Application

Authors: Myoung Ro Kim, Gilwon Yoon

Abstract:

A game using electro-oculography (EOG) as control signal was introduced in this study. Various EOG signals are generated by eye movements. Even though EOG is a quite complex type of signal, distinct and separable EOG signals could be classified from horizontal and vertical, left and right eye movements. Proper signal processing was incorporated since EOG signal has very small amplitude in the order of micro volts and contains noises influenced by external conditions. Locations of the electrodes were set to be above and below as well as left and right positions of the eyes. Four control signals of up, down, left and right were generated. A microcontroller processed signals in order to simulate a DDR game. A LCD display showed arrows falling down with four different head directions. This game may be used as eye exercise for visual concentration and acuity. Our proposed EOG control signal can be utilized in many other applications of human machine interfaces such as wheelchair, computer keyboard and home automation.

Keywords: DDR game, EOG, eye movement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4795
66 Development of a Spark Electrode Ignition System for an Explosion Vessel

Authors: Shaharin A. Sulaiman, Mizuan Minhat

Abstract:

This paper presents development of an ignition system using spark electrodes for application in a research explosion vessel. A single spark is aimed to be discharged with quantifiable ignition energy. The spark electrode system would enable study of flame propagation, ignitability of fuel-air mixtures and other fundamental characteristics of flames. The principle of the capacitive spark circuit of ASTM is studied to charge an appropriate capacitance connected across the spark gap through a large resistor by a high voltage from the source of power supply until the initiation of spark. Different spark energies could be obtained mainly by varying the value of the capacitance and the supply current. The spark sizes produced are found to be affected by the spark gap, electrode size, input voltage and capacitance value.

Keywords: Ignition, Spark Electrode, Flame

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
65 Performance of an Electrocoagulation Process in Treating Direct Dye: Batch and Continuous Upflow Processes

Authors: C. Phalakornkule, S. Polgumhang, W. Tongdaung

Abstract:

This study presents an investigation of electrochemical variables and an application of the optimal parameters in operating a continuous upflow electrocoagulation reactor in removing dye. Direct red 23, which is azo-based, was used as a representative of direct dyes. First, a batch mode was employed to optimize the design parameters: electrode type, electrode distance, current density and electrocoagulation time. The optimal parameters were found to be iron anode, distance between electrodes of 8 mm and current density of 30 A·m-2 with contact time of 5 min. The performance of the continuous upflow reactor with these parameters was satisfactory, with >95% color removal and energy consumption in the order of 0.6-0.7 kWh·m-3.

Keywords: Decolorization, Direct Dye, Electrocoagulation, Textile Wastewater, Upflow Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3041
64 A Tubular Electrode for Radiofrequency Ablation Therapy

Authors: Carlos L. Antunes, Tony R. Almeida, Nélia Raposeiro, Belarmino Gonçalves, Paulo Almeida, André Antunes

Abstract:

In the last two decades radiofrequency ablation (RFA) has been considered a promising medical procedure for the treatment of primary and secondary malignancies. However, the needle-based electrodes so far developed for this kind of treatment are not suitable for the thermal ablation of tumors located in hollow organs like esophagus, colon or bile duct. In this work a tubular electrode solution is presented. Numerical and experimental analyses were performed to characterize the volume of the lesion induced. Results show that this kind of electrode is a feasible solution and numerical simulation might provide a tool for planning RFA procedure with some accuracy.

Keywords: 3D modeling, cancer, medical therapy, radiofrequency ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
63 Numerical Simulation of Plasma Actuator Using OpenFOAM

Authors: H. Yazdani, K. Ghorbanian

Abstract:

This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.

Keywords: Active flow control, flow field, OpenFOAM, plasma actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
62 An Ergonomic Handle Design for Instruments in Laparoscopic Surgery

Authors: Ramon Sancibrian, Carlos Redondo-Figuero, Maria C. Gutierrez-Diez, Esther G. Sarabia, Maria A. Benito-Gonzalez, Jose C. Manuel-Palazuelos

Abstract:

In this paper, the design and evaluation of a handle for laparoscopic surgery is presented. The design of the handle is based on ergonomic principles and tries to avoid awkward postures for surgeons. The handle combines the so-called power-grip and accurate-grip in order to provide strength and accuracy in the performance of surgery. The handle is tested using both objective and subjective approaches. The objective approach uses motion capture techniques to obtain the angles of forearm, arm, wrist and hand. The muscular effort is obtained with electromyography electrodes. On the other hand, a subjective survey has been carried out using questionnaires. Results confirm that the handle is preferred by the majority of the surgeons.

Keywords: Laparoscopic Surgery, Ergonomics, Mechanical Design, Biomechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879