Production of Size-Selected Tin Nanoclusters for Device Applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Production of Size-Selected Tin Nanoclusters for Device Applications

Authors: Ahmad I. Ayesh

Abstract:

This work reports on the fabrication of tin nanoclusters by sputtering and inert-gas condensation inside an ultra-high vacuum compatible system. This technique allows to fine tune the size and yield of nanoclusters by controlling the nanocluster source parameters. The produced nanoclusters are deposited on SiO2/Si substrate with pre-formed electrical electrodes to produce a nanocluster device. Those devices can be potentially used for gas sensor applications.

Keywords: Tin, nanoclusters, inert-gas condensation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091560

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656

References:


[1] P. Mazzoldi, G.W. Arnold, G. Battaglin, F. Gonella and R.F. Haglund: Metal nanocluster formation by ion implantation in silicate glasses. J. Nonlin. Opt. Phys. Mater. 5, 1996, p. 285.
[2] A. Martucci, M. De Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini and J. Fick: Silver-sensitized erbium-doped ion-exchanged sol-gel waveguides. Appl. Phys. A 80, 2005, p. 557.
[3] Karvianto and G.M. Chow: The effects of surface and surface coatings on fluorescence properties of hollow NaYF(4):Yb,Erupconversion nanoparticles. J. Mater. Res. 14, 2011, p. 70.
[4] C. de JuliánFernández, C. Sangregorio, G. Mattei, G. De, A. Saber, S. Lo Russo, G. Battaglin, M. Catalano, E. Cattaruzza, F. Gonella, D. Gatteschi and P. Mazzoldi: Structure and magnetic properties of alloy-based nanoparticles silica composites prepared by ion-implantation and sol-gel techniques. Mater. Sci. Eng. C 15, 2001, p. 59.
[5] C. de JuliánFernández, G. Mattei, C. Maurizio, E. Cattaruzza, S. Padovani, G. Battaglin, F. Gonella, F. D’Acapito and P. Mazzoldi: Magnetic properties of Co-Cu nanoparticles dispersed in silica matrix. J. Magn. Magn. Mater. 187, 2005, p. 290.
[6] V. Aroutiounian: Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. International Journal of Hydrogen Energy 32, 2007, p. 1145.
[7] P. Bonzi, L.E. Depero, F. Parmigiani, C. Perego, G. Sberveglieri, and G. Quattroni: Formation and structure of tin-iron oxide thin film CO sensors. J. Mater. Res. 9, 1994, p. 1250.
[8] A. I. Ayesh, N. Qamhieh, H. Ghamlouche, S. Thaker, and M. EL-Shaer: Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J. Appl. Phys. 107, 2010, p. 034317.
[9] A. I. Ayesh, S. Thaker, N. Qamhieh, and H. Ghamlouche: Size-controlled Pd nanocluster grown by plasma gas-condensation method. J. Nanopart. Res. 13, 2011, p. 1125.
[10] A. I. Ayesh, N. Qamhieh, S. T. Mahmoud, and H. Alawadhi: Production of size-selected CuxSn1-x nanoclusters. Advanced Materials Research 295-297, 2011, pp. 70-73.
[11] P. H. Dawson: Quadrupole Mass Spectrometry and its Applications, Elsevier Press, New York (1976).
[12] S. Pratontep, S. J. Carroll, C. Xirouchaki, M. Streun, and R. E. Palmer: Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 76, 2005, p. 045103.
[13] E. L. Knuth: Size correlations for condensation clusters produced in free-jet expansions. J. Chem. Phys. 107, 1997, p. 9125.
[14] A. N. Banerjee, R. Krishna, and B. Das: Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique. Appl. Phys. A 90, 2008, p. 299.
[15] H. Haberland, Nanoclusters of Atoms and Molecules, Springer, Berlin, 1995.
[16] S. Yamamuro, K. Sumiyama, W. Sakurai, and K. Suzuki, Cr cluster deposition by plasma-gas-condensation method. Supramolecular Science 5, 1998, p. 239.
[17] T. Hihara and K. Sumiyama: Formation and size control of a Ni cluster by plasma gas condensation. J. Appl. Phys. 84, 1998, p. 5270.
[18] A. I. Ayesh, ‘Electronic transport in Pd nanocluster devices’, Appl. Phys. Lett. 98, 2011, p. 133108.
[19] B. Ozturk, C. Blackledge, B. N. Flanders, and D. Grischkowsky, Appl. Phys. Lett. 88, 2006, p. 073108.