
 

 

  
Abstract—When the shock front (SF) hits the central electrode 

axis of plasma focus device, a reflected shock wave moves radially 
outwards. The current sheath (CS) results from ionization of filled 
gas between two electrodes continues to compress inwards until it 
hits the out-going reflected shock front. In this paper the Lagrangian 
equations are solved for a parabolic shock trajectory yielding a first 
and second approximation for the CS path. To determine the 
accuracy of the approximation, the same problem is solved for a 
straight shock.  
 

Keywords—Radial compression, Shock wave trajectory, Current 
sheath, Slog model. 

I. INTRODUCTION 
N plasma focus generators the magnetic energy is stored 
behind the moving current sheath [1]. A portion of this 

energy is converted into plasma energy during the rapid 
collapse of the current sheath towards the axis beyond the end 
of the central electrode. Electrical breakdown generates some 
initial plasma configuration through which the discharge 
current can flow and at very low pressure a discharge can 
develop within the whole inter-electrode volume. The current 
sheath formed at the end of the breakdown phase is 
accelerated by Lorentz force towards the open end of the inner 
electrode and then the current sheath sweeps around the end 
of the anode electrode and finally implodes due to the inward 
J×B force. When the current sheath reaches the end of the 
central electrode, it reverses over itself and collapses radially 
inward, heating the pinching plasma enclosed in it. The radial 
compression of CS is open at one end.  Hence a gas dynamic 
shock is propagated ahead of the CS into the undisturbed 
filling gas [2]. The snowplow model is used for axial 
acceleration of CS to obtain axial trajectory, CS speed and 
current profile.  As the CS is assumed to be infinitesimally 
thin, no information of density is contained in the physics of 
the equation of motion, although an estimate of density may 
be obtained by invoking shock wave theory [3]. Fig. 1 shows 
the configuration of the 2D cylindrical geometry shock wave 
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and variation of shock wave accompanied with inward motion 
of current sheath at the radial compression. The path of CS 
and shock wave are correlated together and if we know the 
path of the shock at the radial compression of CS, we can 
simulate the trajectory of imploding CS. 

II. SIMULATION MODEL 
In the plasma focus model a radially implosive plasma slug 

is formed above the anode in the radial compression of CS. 
This slug is driven by the radial inward magnetic piston. The 
plasma gas inside the slug is compressed and heated by the 
shock wave. The motion of the plasma slug can be described 
by the cylindrical geometry 2D shock wave equations. Let us 
consider an ideal cylindrical magnetic piston of argon plasma. 
Suppose that the radius of this piston decreases so rapidly that 
a strong shock is driven in front of the wall toward the axis of 
the cylinder. We suppose that two particles that are located at 
different radii in the cylindrical CS, their respective radii will 
always the same. In Fig. 2 the path of current sheath CS (t), 
the path of shock wave S (t), and the path of any particle 
P(ξ ,t) are shown. ξ  corresponds to the mass between the 

CS and considered particle and t′  refers to the time when the 
shock passes over the particle. Thus t′  may be regarded as a 
function of ξ  and we define ( )22

0 )(tSa ′−= πρξ   in which 

0ρ and a are undisturbed gas density and radius of the 
central electrode [4].  
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Fig. 1 (a) - configuration of the 2D cylindrical geometry shock wave, 

(b) - formation of shock wave driven by CS inward motion 
 

 
 

Fig. 2 The path of current sheath CS (t), the path of shock wave S (t), 
and the path of any particle P(ξ ,t) 

 
 

The momentum equation is seen to be 
r
P

t
r

∂
∂

−=
∂
∂

2

2

ρ where 

P  is the pressure acting on the particle to accelerate it. The 
pressure is assumed to be entirely isentropic except for a jump 
in entropy as the shock crosses the particle’s pass. Therefore 
the ratio 

γρ
P is a constant for each particle as it travels from 

the shock toward the axis of cylinder. γ  is the ratio of 
specific heats( 667.1=γ  for Ar as filling gas). The 
pressure and density of a particle immediately after the shock 
( iP  and iρ  ) can be found by using the shock relations in 
conjunction with the perfect gas law as 

)()1()( 2
0 tStPi ′−=′ ερ and 

ε
ρρ 0=i

  in which
1
1

+
−
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and )(tS ′  is the velocity of the shock as it crosses the 

particle )(t′ζ  . At any later time, ζ may be found by taking 

the integral ∫−=
),(

)(

),(2
tP

tCS

rdrtr
ζ

ρπξ in which ),( trρ is the 

density at any point on the ),( tr  plane. Thus we can 
conclude that 
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where sζ  is the value of ζ   at the shock at any time t  . 
From the equation of momentum we find that 
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∂  . Upon integration from the shock to any 

particle this becomes 
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trtPtP  . Let us putting this 

information back into equation of ),(2 tP ζ  and 
nondimensionalize the quantities appearing in the equation as 

0
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t
t
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a
rx s ==Ζ== τ

π
ζ . 0t  is chosen so that τ is in 

sμ  . Most interesting cases may be covered by assuming a 
parabolic shock trajectory as 21 βτατ −−=sx in which α

 

 

is nondimensional velocity of the shock and β
 

is the shock’s 
constant acceleration or deceleration toward the axis 
depending upon β  is positive or negative. Substituting this 
information into equation of ),(2 tP ζ , we find 
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 . This 

equation implies that a particle Z  is, at a time τ , at a 
position away from the shock by a distance equal to ε  
multiplied by an integral. To simplify the equation it may be 
assumed that the pressure doesn’t change much between the 
shock and CS. In effect we conclude that 
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we invoke a program to perform a numerical integration to 
obtain path of CS respect to strong shock wave trajectory [5]. 

III. NUMERICAL SIMULATION RESULTS AND DISCUSSION 
Fig. 3 shows a constant velocity shock ( 0=β ) with the 

CS path computed for 667.1=γ  and 1.1=γ . The equation 
of CS path for the first approximation becomes 

Zxxx ssfirst εε −−+= )1( 222  . In order to find the second 

approximation, we must substitute the second derivative of 
),( τZx first with respect to τ into the subintegral of 

),(2 τZx equation. In Fig. 4 CS trajectory for accelerating 
shock and in Fig. 5 CS trajectory for decelerating shock 
( 1.1,667.1=γ ) simulated. 

 

 
 

 
Fig. 3 CS trajectory for constant velocity shock 

 

 

 
Fig. 4 CS trajectory for accelerating velocity shock 

 
In the pinch phase of focused plasma much of the energy 

available is absorbed in the ionization process. Here the real 
value of γ when argon is used as working gas may be 
expected would be closer to 1.1 than to 667.1 . As it shown 
in fig.3, for 667.1=γ it is seen that the first and second 
approximations for the CS trajectory are very close together 
until the CS reaches a radial position 75.0 . At this point the 
second approximation diverges from the first approximation 
and ultimately turns back toward its initial position. Physically 
a decrease in the denominator corresponds to a decrease in 
pressure at the CS. It is logical the pressure decrease from the 
shock to the CS at a given time because in this region of the 
flow, there is quasi-steady supersonic flow into a converging 
channel which implies a decrease in velocity and a 
corresponding adverse pressure gradient. Since the conditions 
behind the shock are fixed, the pressure at the CS must be 
steadily decreasing as the gap between the shock and CS 
widens. As we see in fig.4, for 1.1=γ there is no difference 
large enough to be seen between the first and second 
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approximations until the second approximation reaches the 
zero pressure limit. This occurs at 27.0),0( =τx that is 
much smaller than the final radius of the CS for the constant 
shock. This fact implies that the CS pushing an accelerating 
shock has control over the shock for a longer time than the CS 
pushing a constant velocity shock. For 667.1=γ , the 
accelerating shock has a piston path given by the second 
approximation that is closer to the center than the first 
approximation. That is, in order to accelerate the flow, the 
pressure at the piston must be greater than the pressure at the 
shock.  

 

 

 
Fig. 5 CS trajectory for decelerating velocity shock 

 
For the first approximation, this pressure difference is 

neglected. In the second approximation it is included. This 
effect is also present for the 1.1=γ case; however, it is so 
small that it cannot be seen on the scale of Fig. 4. Fig. 5 shows 
the case of a decelerating shock. There is little new on this 
graph except that the piston turns back even sooner than it 
does for the constant velocity shock.  
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