Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy

Authors: Yusmeeraz Yusof, Yoshiyuki Yanagimoto, Shigeyasu Uno, Kazuo Nakazato

Abstract:

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.

Keywords: Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1072700

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094

References:


[1] K. J. Cash, A. J. Heeger, K. W. Plaxco, and Y. Xiao, Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequencespecific DNA detection in blood serum, Anal. Chem., 2009, 81, pp. 656- 661.
[2] S. S. Zhang, J. P. Xia, and X. M. Li, Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles, Anal. Chem. , 2008, 80, pp. 8382-8388.
[3] G. A. Evtugyn, O. E. Goldfarb, H. C. Budnikov, A. N. Ivanov, and V. G. Vinter, Amperometric DNA-peroxidase sensor for detection of pharmaceutical preparations, Sensors, 2005, 5, pp. 364-376.
[4] K. Hashimoto, K. Ito, and Y. Ishimori, Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye, Anal. Chem., 1994, 66, pp. 3830-3833.
[5] J. Y. Park, and S. M. Park, DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool, Sensors, 2009, 9, pp. 9513-9532.
[6] C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, and R. Thewes, A fully electronic label free DNA sensor chip, IEEE Sens. J., 2007, 7, pp. 577-9532.
[7] Y. Yusof, K. Sugimoto, H. Ozawa, S. Uno, and K. Nakazato, On-chip microelectrode capacitance measurement for biosensing applications, Jpn. J. Appl. Phys., 2010, 49, 01AG05.
[8] J. Kafka, O. Panke, B. Abendroth, and F. Lisdat, A label-free DNA sensor based on impedance spectroscopy, Electrochimica Acta, 2008, 53, pp. 7467-7474.
[9] R. P. Janek, W. R. Fawcett, and A. Ulman, Impedance spectroscopy of self-assembled monolayers on Au(111): Evidence for complex doublelayer structure in aqeous NaClO4 at the potential of zero charge, J. Phys. Chem. B, 1997, 101, pp. 8550-8558.
[10] C. Berggren, P. Stalhandske, J. Brundell, and G. Johansson, A feasibility study of a capacitive biosensor for direct detection of DNA hybridization, Electroanalysis, 1999, 11, pp. 156-160.
[11] C. Guiducci, C. Stagni, A. Fischetti, U. Mastromatteo, and L. Benini, Microelectrodes on a silicon chip for label-free capacitive DNA sensing, IEEE Sens. J., 2006, 6, pp. 1084-1093.
[12] C. Guiducci, C. Stagni, G. Zuccheri, A. Bogliolo, L. Benini, B. Samori, and B. Ricco, DNA detection by integrable electronics, Biosens. Bioelectron., 2004, 19, pp. 781-787.
[13] T. M. Herne and M. J. Tarlov, Characterization of DNA probes immobilized on gold surfaces, J. Am. Chem. Soc., 1997, 119, pp. 8916-8920.
[14] J. E. B. Randles, Kinetics of rapid electrode reactions, Discuss. Faraday Soc., 1947, 1, 11-9.
[15] U. Kaatze and Y. Feldman, Broadband dielectric spectrometry of liquids and biosystems, Meas. Sci. Technol., 2006, 17, R17-R35.
[16] M. Sheffer, V. Vivier, and D. Mandler, Self-assembled monolayers on Au microelectrodes, Electrochem. Comm., 2007, 9, pp. 2827-2832.
[17] M. A. Rampi, O. J. A. Schueller, and G. M. Whitesides, Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness, Appl. Phys. Letters, 1998, 72, pp. 1781-1783.
[18] E. L. S. Wong, E. Chow, and J. J. Gooding, DNA recognition interfaces: The influence of Interfacial Design on the efficiency and kinetics of hybridization, Langmuir, 2005, 21, pp. 6957-6965.
[19] S. Carrara, F. K. Gurkaynak, C. Guiducci, C. Stagni, L. Benini, Y. Leblebici, B. Samori, and G. D. Micheli, Interface layering phenomena in capacitance detection of DNA with biochips, Sens. Transducers J., 2007, 76, pp. 969-977.
[20] F. J. Mearns, E. L. S. Wong, K. Short, D. B. Hibbert, and J. J. Gooding, DNA biosensor concepts based on a change in the DNA persistence length upon hybridization, Electroanalysis, 2006, 18, pp. 1971-1981.
[21] R. E. Holmlin, P. J. Dandliker, and J. K. Barton, Charge transfer through the DNA base stack, Angew. Chem. Int. Ed., 1997, 36, pp. 2714-2730.
[22] J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle, Charge transfer and transport in DNA, Proc. Natl. Acad. Sci. USA, 1998, 95, pp. 12759-12765.
[23] P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, and J. S. Lee, M-DNA: a complex between divalent metal ions and DNA which behaves as a molecular wire, J. Mol. Biol., 1999, 294, pp. 477-485.