Search results for: EOG
8 Control Signal from EOG Analysis and Its Application
Authors: Myoung Ro Kim, Gilwon Yoon
Abstract:
A game using electro-oculography (EOG) as control signal was introduced in this study. Various EOG signals are generated by eye movements. Even though EOG is a quite complex type of signal, distinct and separable EOG signals could be classified from horizontal and vertical, left and right eye movements. Proper signal processing was incorporated since EOG signal has very small amplitude in the order of micro volts and contains noises influenced by external conditions. Locations of the electrodes were set to be above and below as well as left and right positions of the eyes. Four control signals of up, down, left and right were generated. A microcontroller processed signals in order to simulate a DDR game. A LCD display showed arrows falling down with four different head directions. This game may be used as eye exercise for visual concentration and acuity. Our proposed EOG control signal can be utilized in many other applications of human machine interfaces such as wheelchair, computer keyboard and home automation.
Keywords: DDR game, EOG, eye movement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48407 EEG Signal Processing Methods to Differentiate Mental States
Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon
Abstract:
EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.
Keywords: EEG, focus, mental state, outlier, signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15896 Microcontroller Based EOG Guided Wheelchair
Authors: Jobby K. Chacko, Deepu Oommen, Kevin K. Mathew, Noble Sunny, N. Babu
Abstract:
A new cost effective, eye controlled method was introduced to guide and control a wheel chair for disable people, based on Electrooculography (EOG). The guidance and control is effected by eye ball movements within the socket. The system consists of a standard electric wheelchair with an on-board microcontroller system attached. EOG is a new technology to sense the eye signals for eye movements and these signals are captured using electrodes, signal processed such as amplification, noise filtering, and then given to microcontroller which drives the motors attached with wheel chair for propulsion. This technique could be very useful in applications such as mobility for handicapped and paralyzed persons.
Keywords: Electrooculography, Microcontroller, Signal processing, Wheelchair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56395 EOG Controlled Motorized Wheelchair for Disabled Persons
Authors: A. Naga Rajesh, S. Chandralingam, T. Anjaneyulu, K. Satyanarayana
Abstract:
Assistive robotics are playing a vital role in advancing the quality of life for disable people. There exist wide range of systems that can control and guide autonomous mobile robots. The objective of the control system is to guide an autonomous mobile robot using the movement of eyes by means of EOG signal. The EOG signal is acquired using Ag/AgCl electrodes and this signal is processed by a microcontroller unit to calculate the eye gaze direction. Then according to the guidance control strategy, the control commands of the wheelchair are sent. The classification of different eye movements allows us to generate simple code for controlling the wheelchair. This work was aimed towards developing a usable and low-cost assistive robotic wheel chair system for disabled people. To live more independent life, the system can be used by the handicapped people especially those with only eye-motor coordination.
Keywords: Electrooculography, Microcontroller, Motors, Wheelchair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41694 Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling
Authors: Parisa Shooshtari, Gelareh Mohamadi, Behnam Molaee Ardekani, Mohammad Bagher Shamsollahi
Abstract:
EEG signal is one of the oldest measures of brain activity that has been used vastly for clinical diagnoses and biomedical researches. However, EEG signals are highly contaminated with various artifacts, both from the subject and from equipment interferences. Among these various kinds of artifacts, ocular noise is the most important one. Since many applications such as BCI require online and real-time processing of EEG signal, it is ideal if the removal of artifacts is performed in an online fashion. Recently, some methods for online ocular artifact removing have been proposed. One of these methods is ARMAX modeling of EEG signal. This method assumes that the recorded EEG signal is a combination of EOG artifacts and the background EEG. Then the background EEG is estimated via estimation of ARMAX parameters. The other recently proposed method is based on adaptive filtering. This method uses EOG signal as the reference input and subtracts EOG artifacts from recorded EEG signals. In this paper we investigate the efficiency of each method for removing of EOG artifacts. A comparison is made between these two methods. Our undertaken conclusion from this comparison is that adaptive filtering method has better results compared with the results achieved by ARMAX modeling.Keywords: Ocular Artifacts, EEG, Adaptive Filtering, ARMAX
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19323 Retina Based Mouse Control (RBMC)
Authors: Arslan Qamar Malik, Jehanzeb Ahmad
Abstract:
The paper presents a novel idea to control computer mouse cursor movement with human eyes. In this paper, a working of the product has been described as to how it helps the special people share their knowledge with the world. Number of traditional techniques such as Head and Eye Movement Tracking Systems etc. exist for cursor control by making use of image processing in which light is the primary source. Electro-oculography (EOG) is a new technology to sense eye signals with which the mouse cursor can be controlled. The signals captured using sensors, are first amplified, then noise is removed and then digitized, before being transferred to PC for software interfacing.Keywords: Human Computer Interaction, Real-Time System, Electro-oculography, Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42982 A Software Tool Design for Cerebral Infarction of MR Images
Authors: Kyoung-Jong Park, Woong-Gi Jeon, Hee-Cheol Kim, Dong-Eog Kim, Heung-Kook Choi
Abstract:
The brain MR imaging-based clinical research and analysis system were specifically built and the development for a large-scale data was targeted. We used the general clinical data available for building large-scale data. Registration period for the selection of the lesion ROI and the region growing algorithm was used and the Mesh-warp algorithm for matching was implemented. The accuracy of the matching errors was modified individually. Also, the large ROI research data can accumulate by our developed compression method. In this way, the correctly decision criteria to the research result was suggested. The experimental groups were age, sex, MR type, patient ID and smoking which can easily be queries. The result data was visualized of the overlapped images by a color table. Its data was calculated by the statistical package. The evaluation for the utilization of this system in the chronic ischemic damage in the area has done from patients with the acute cerebral infarction. This is the cause of neurologic disability index location in the center portion of the lateral ventricle facing. The corona radiate was found in the position. Finally, the system reliability was measured both inter-user and intra-user registering correlation.
Keywords: Software tool design, Cerebral infarction, Brain MR image, Registration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001 Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network
Authors: V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss
Abstract:
The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.Keywords: Auto Regressive (AR) Coefficients, Feed Forward Neural Network (FNN), Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm, Polynomial Neural Network (PNN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920