Search results for: ultrasonic vibration hot embossing
25 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application
Authors: Paweł Żur, Alicja Żur, Andrzej Baier
Abstract:
Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.
Keywords: 3D printing, composite bushing, modal analysis, multi-material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5824 Detecting Cavitation in a Vertical Sea water Centrifugal Lift Pump Related to Iran Oil Industry Cooling Water Circulation System
Authors: Omid A. Zargar
Abstract:
Cavitation is one of the most well-known process faults that may occur in different industrial equipment especially centrifugal pumps. Cavitation also may happen in water pumps and turbines. Sometimes cavitation has been severe enough to wear holes in the impeller and damage the vanes to such a degree that the impeller becomes very ineffective. More commonly, the pump efficiency will decrease significantly during cavitation and continue to decrease as damage to the impeller increases. Typically, when cavitation occurs, an audible sound similar to ‘marbles’ or ‘crackling’ is reported to be emitted from the pump. In this paper, the most effective monitoring items and techniques in detecting cavitation discussed in details. Besides, some successful solutions for solving this problem for sea water vertical Centrifugal lift Pump discussed through a case history related to Iran oil industry. Furthermore, balance line modification, strainer choking and random resonance in sea water pumps discussed. In addition, a new Method for diagnosing mechanical conditions of sea water vertical Centrifugal lift Pumps introduced. This method involves disaggregating bus current by device into disaggregated currents having correspondences with operating currents in response to measured bus current. Moreover, some new patents and innovations in mechanical sea water pumping and cooling systems discussed in this paper.
Keywords: Cavitation, Vibration Analysis, Centrifugal Pump, Vertical Pump, Sea Water Pump, Balance Line, Strainer, Time Wave Form (TWF), Fast Fourier Transform (FFT)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415923 Ghost Frequency Noise Reduction through Displacement Deviation Analysis
Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran
Abstract:
Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.
Keywords: Displacement deviation analysis, gear whine, ghost frequency, sound quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80222 Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite
Authors: B. Tiseo, V. Quaranta, G. Bruno, G. Sisinni
Abstract:
There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat’s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A.Keywords: CubeSat, Nano-satellite, shock, testing, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171521 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator
Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Yong Kweon Suh
Abstract:
Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.Keywords: Environmental industry, Separator, CFD, Fine aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180720 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs
Authors: Andrej Golowin, Viktor Denk, Axel Riepe
Abstract:
Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.Keywords: Damage tolerance, Monte-Carlo method, fan blade and disc, laser shock peening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157719 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings
Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo
Abstract:
The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.
Keywords: Building structure, seismic waves, spectral analysis, structural response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529718 A Vehicle Monitoring System Based on the LoRa Technique
Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang
Abstract:
Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.
Keywords: Vehicle, monitoring system, LoRa, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 310117 Rotor Bearing System Analysis Using the Transfer Matrix Method with Thickness Assumption of Disk and Bearing
Authors: Omid Ghasemalizadeh, Mohammad Reza Mirzaee, Hossein Sadeghi, Mohammad Taghi Ahmadian
Abstract:
There are lots of different ways to find the natural frequencies of a rotating system. One of the most effective methods which is used because of its precision and correctness is the application of the transfer matrix. By use of this method the entire continuous system is subdivided and the corresponding differential equation can be stated in matrix form. So to analyze shaft that is this paper issue the rotor is divided as several elements along the shaft which each one has its own mass and moment of inertia, which this work would create possibility of defining the named matrix. By Choosing more elements number, the size of matrix would become larger and as a result more accurate answers would be earned. In this paper the dynamics of a rotor-bearing system is analyzed, considering the gyroscopic effect. To increase the accuracy of modeling the thickness of the disk and bearings is also taken into account which would cause more complicated matrix to be solved. Entering these parameters to our modeling would change the results completely that these differences are shown in the results. As said upper, to define transfer matrix to reach the natural frequencies of probed system, introducing some elements would be one of the requirements. For the boundary condition of these elements, bearings at the end of the shaft are modeled as equivalent spring and dampers for the discretized system. Also, continuous model is used for the shaft in the system. By above considerations and using transfer matrix, exact results are taken from the calculations. Results Show that, by increasing thickness of the bearing the amplitude of vibration would decrease, but obviously the stiffness of the shaft and the natural frequencies of the system would accompany growth. Consequently it is easily understood that ignoring the influences of bearing and disk thicknesses would results not real answers.Keywords: Rotor System, Disk and Bearing Thickness, Transfer Matrix, Amplitude.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154816 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping
Authors: Chao Yi, Cunyue Lu, Lingwei Quan
Abstract:
Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.
Keywords: Elliptical trajectory, linear motor, piezoelectric stack, rigid clamping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72015 Accurate Calculation of Free Frequencies of Beams and Rectangular Plates
Authors: R .Lassoued, M. Guenfoud
Abstract:
An accurate procedure to determine free vibrations of beams and plates is presented. The natural frequencies are exact solutions of governing vibration equations witch load to a nonlinear homogeny system. The bilinear and linear structures considered simulate a bridge. The dynamic behavior of this one is analyzed by using the theory of the orthotropic plate simply supported on two sides and free on the two others. The plate can be excited by a convoy of constant or harmonic loads. The determination of the dynamic response of the structures considered requires knowledge of the free frequencies and the shape modes of vibrations. Our work is in this context. Indeed, we are interested to develop a self-consistent calculation of the Eigen frequencies. The formulation is based on the determination of the solution of the differential equations of vibrations. The boundary conditions corresponding to the shape modes permit to lead to a homogeneous system. Determination of the noncommonplace solutions of this system led to a nonlinear problem in Eigen frequencies. We thus, develop a computer code for the determination of the eigenvalues. It is based on a method of bisection with interpolation whose precision reaches 10 -12. Moreover, to determine the corresponding modes, the calculation algorithm that we develop uses the method of Gauss with a partial optimization of the "pivots" combined with an inverse power procedure. The Eigen frequencies of a plate simply supported along two opposite sides while considering the two other free sides are thus analyzed. The results could be generalized with the case of a beam by regarding it as a plate with low width. We give, in this paper, some examples of treated cases. The comparison with results presented in the literature is completely satisfactory.Keywords: Free frequencies, beams, rectangular plates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219314 Long Wavelength Coherent Pulse of Sound Propagating in Granular Media
Authors: Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding
Abstract:
A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results.Keywords: Discrete elements, Hertzian Contact, polydispersity, weakly nonlinear, wave propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92213 Comparison of the Music Sound System between Thailand and Vietnam
Authors: Sansanee Jasuwan
Abstract:
Thai and Vietnamese music had been influenced and inspired by the traditional Chinese music. Whereby the differences of the tuning systems as well as the music modes are obviously known . The research examined the character of musical instruments, songs and culture between Thai and Vietnamese. An analyzing of songs and modes and the study of tone vibration as well as timbre had been done accurately. This qualitative research is based on documentary and songs analysis, field study, interviews and focus group discussion of Thai and Vietnamese masters. The research aims are to examine the musical instruments and songs of both Thai and Vietnamese as well as the comparison of the sounding system between Thailand and Vietnam. The finding of the research has revealed that there are similarities in certain kinds of instruments but differences in the sound systems regarding songs and scale of Thailand and Vietnam. Both cultural musical instruments are diverse and synthetic combining native and foreign inspiring. An integral part of Vietnam has been highly impacted by Chinese musical convention. Korea, Mongolia and Japan music have also play an active and effectively influenced as their geographical related. Whereas Thailand has been influenced by Chinese and Indian traditional music. Both Thai and Vietnamese musical instruments can be divided into four groups: plucked strings, bowed strings, winds and percussion. Songs from both countries have their own characteristics. They are playing a role in touching people heart in ceremonies, social functions and an essential element of the native performing arts. The Vietnamese music melodies have been influenced by Chinese music and taken the same character as Chinese songs. Thai song has specific identity and variety showed in its unique melody. Pentatonic scales have effectively been used in composing Thai and Vietnamese songs, but in different implementing concept.
Keywords: Music sound system, Thailand, Vietnam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438412 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage
Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves
Abstract:
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.
Keywords: Apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit bruise damage, electronic device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154811 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70810 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms
Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre
Abstract:
Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.
Keywords: Dynamic modelling, long term instability risks, room and pillar, seismic collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4829 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils
Authors: Ákos Wolf, Richard P. Ray
Abstract:
Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils
Keywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11688 Simulation of an Auto-Tuning Bicycle Suspension Fork with Quick Releasing Valves
Authors: Y. C. Mao, G. S. Chen
Abstract:
Bicycle configuration is not as large as those of motorcycles or automobiles, while it indeed composes a complicated dynamic system. People-s requirements on comfortability, controllability and safety grow higher as the research and development technologies improve. The shock absorber affects the vehicle suspension performances enormously. The absorber takes the vibration energy and releases it at a suitable time, keeping the wheel under a proper contact condition with road surface, maintaining the vehicle chassis stability. Suspension design for mountain bicycles is more difficult than that of city bikes since it encounters dynamic variations on road and loading conditions. Riders need a stiff damper as they exert to tread on the pedals when climbing, while a soft damper when they descend downhill. Various switchable shock absorbers are proposed in markets, however riders have to manually switch them among soft, hard and lock positions. This study proposes a novel design of the bicycle shock absorber, which provides automatic smooth tuning of the damping coefficient, from a predetermined lower bound to theoretically unlimited. An automatic quick releasing valve is involved in this design so that it can release the peak pressure when the suspension fork runs into a square-wave type obstacle and prevent the chassis from damage, avoiding the rider skeleton from injury. This design achieves the automatic tuning process by innovative plunger valve and fluidic passage arrangements without any electronic devices. Theoretical modelling of the damper and spring are established in this study. Design parameters of the valves and fluidic passages are determined. Relations between design parameters and shock absorber performances are discussed in this paper. The analytical results give directions to the shock absorber manufacture.
Keywords: Modelling, Simulation, Bicycle, Shock Absorber, Damping, Releasing Valve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28907 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding
Authors: Indunil Jayatilake, Warna Karunasena
Abstract:
Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.
Keywords: Debonding, dynamic response, finite element modelling, FRP beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5216 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language
Authors: Leo Laine, Morgan Johansson
Abstract:
To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.
Keywords: Airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9075 An Identification Method of Geological Boundary Using Elastic Waves
Authors: Masamitsu Chikaraishi, Mutsuto Kawahara
Abstract:
This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.
Keywords: Parameter identification, finite element method, average acceleration method, first order adjoint equation method, weighted gradient method, geological boundary, navier equation, optimal control theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15844 Development of Mechanical Properties of Self Compacting Concrete Contain Rice Husk Ash
Authors: M. A. Ahmadi, O. Alidoust, I. Sadrinejad, M. Nayeri
Abstract:
Self-compacting concrete (SCC), a new kind of high performance concrete (HPC) have been first developed in Japan in 1986. The development of SCC has made casting of dense reinforcement and mass concrete convenient, has minimized noise. Fresh self-compacting concrete (SCC) flows into formwork and around obstructions under its own weight to fill it completely and self-compact (without any need for vibration), without any segregation and blocking. The elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. SCC mixes generally have a much higher content of fine fillers, including cement, and produce excessively high compressive strength concrete, which restricts its field of application to special concrete only. To use SCC mixes in general concrete construction practice, requires low cost materials to make inexpensive concrete. Rice husk ash (RHA) has been used as a highly reactive pozzolanic material to improve the microstructure of the interfacial transition zone (ITZ) between the cement paste and the aggregate in self compacting concrete. Mechanical experiments of RHA blended Portland cement concretes revealed that in addition to the pozzolanic reactivity of RHA (chemical aspect), the particle grading (physical aspect) of cement and RHA mixtures also exerted significant influences on the blending efficiency. The scope of this research was to determine the usefulness of Rice husk ash (RHA) in the development of economical self compacting concrete (SCC). The cost of materials will be decreased by reducing the cement content by using waste material like rice husk ash instead of. This paper presents a study on the development of Mechanical properties up to 180 days of self compacting and ordinary concretes with rice-husk ash (RHA), from a rice paddy milling industry in Rasht (Iran). Two different replacement percentages of cement by RHA, 10%, and 20%, and two different water/cementicious material ratios (0.40 and 0.35), were used for both of self compacting and normal concrete specimens. The results are compared with those of the self compacting concrete without RHA, with compressive, flexural strength and modulus of elasticity. It is concluded that RHA provides a positive effect on the Mechanical properties at age after 60 days. Base of the result self compacting concrete specimens have higher value than normal concrete specimens in all test except modulus of elasticity. Also specimens with 20% replacement of cement by RHA have the best performance.Keywords: Self compacting concrete (SCC), Rice husk ash(RHA), Mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36793 Parametric Investigation of Aircraft Door’s Emergency Power Assist System (EPAS)
Authors: Marshal D. Kafle, Jun H. Kim, Hyun W. Been, Kyoung M. Min, Sung H. Kim
Abstract:
Fluid viscous damping systems are well suited for many air vehicles subjected to shock and vibration. These damping system work with the principle of viscous fluid throttling through the orifice to create huge pressure difference between compression and rebound chamber and obtain the required damping force. One application of such systems is its use in aircraft door system to counteract the door’s velocity and safely stop it. In exigency situations like crash or emergency landing where the door doesn’t open easily, possibly due to unusually tilting of fuselage or some obstacles or intrusion of debris obstruction to move the parts of the door, such system can be combined with other systems to provide needed force to forcefully open the door and also securely stop it simultaneously within the required time i.e. less than 8 seconds. In the present study, a hydraulic system called snubber along with other systems like actuator, gas bottle assembly which together known as emergency power assist system (EPAS) is designed, built and experimentally studied to check the magnitude of angular velocity, damping force and time required to effectively open the door. Whenever needed, the gas pressure from the bottle is released to actuate the actuator and at the same time pull the snubber’s piston to operate the emergency opening of the door. Such EPAS installed in the suspension arm of the aircraft door is studied explicitly changing parameters like orifice size, oil level, oil viscosity and bypass valve gap and its spring of the snubber at varying temperature to generate the optimum design case. Comparative analysis of the EPAS at several cases is done and conclusions are made. It is found that during emergency condition, the system opening time and angular velocity, when snubber with 0.3mm piston and shaft orifice and bypass valve gap of 0.5 mm with its original spring is used, shows significant improvement over the old ones.
Keywords: Aircraft Door Damper, Bypass Valve, Emergency Power Assist System, Hydraulic Damper, Oil viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41202 Photocatalytic Active Surface of LWSCC Architectural Concretes
Authors: P. Novosad, L. Osuska, M. Tazky, T. Tazky
Abstract:
Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.
Keywords: Photocatalytic concretes, titanium dioxide, architectural concretes, LWSCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7671 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment
Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska
Abstract:
Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.
Keywords: Accident assessment model, eye tracking, occupational safety, scaffolding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147