
  
Abstract—There are lots of different ways to find the natural 

frequencies of a rotating system. One of the most effective methods 
which is used because of its precision and correctness is the 
application of the transfer matrix. By use of this method the entire 
continuous system is subdivided and the corresponding differential 
equation can be stated in matrix form.  So to analyze shaft that is this 
paper issue the rotor is divided as several elements along the shaft 
which each one has its own mass and moment of inertia, which this 
work would create possibility of defining the named matrix.  By 
Choosing more elements number, the size of matrix would become 
larger and as a result more accurate answers would be earned. In this 
paper the dynamics of a rotor-bearing system is analyzed, 
considering the gyroscopic effect. To increase the accuracy of 
modeling the thickness of the disk and bearings is also taken into 
account which would cause more complicated matrix to be solved. 
Entering these parameters to our modeling would change the results 
completely that these differences are shown in the results. As said 
upper, to define transfer matrix to reach the natural frequencies of 
probed system, introducing some elements would be one of the 
requirements. For the boundary condition of these elements, bearings 
at the end of the shaft are modeled as equivalent spring and dampers 
for the discretized system. Also, continuous model is used for the 
shaft in the system. By above considerations and using transfer 
matrix, exact results are taken from the calculations. Results Show 
that, by increasing thickness of the bearing the amplitude of vibration 
would decrease, but obviously the stiffness of the shaft and the 
natural frequencies of the system would accompany growth. 
Consequently it is easily understood that ignoring the influences of 
bearing and disk thicknesses would results not real answers.  

Keywords—Rotor System, Disk and Bearing Thickness, Transfer 
Matrix, Amplitude.  

I. INTRODUCTION 
OTARY machines such as turbine, generators, and 
electrical motors are one the most important parts of 

industries esearches and rotating shafts are the most effective 
elements of these machines. Role of rotary shafts are in power 
transmission. These shafts would bear different parts such as 
bearings, disks, gears and etc on them. Various methods have 
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been used to analyze rotary systems which each one ahs its 
own advantages. The Jeffcott model1 for rotors assumes a 
massless shaft having a rigid rotor on it. The transfer matrix is 
a useful method for analyzing elastic structures2. The transfer 
matrices of many standard parts are given in handbooks. 
Sometimes, however, the required transfer matrix is not 
catalogued. It is often possible to find the transfer matrix by 
using simple dynamic equations or by using results that are 
tabulated in engineering handbooks. The merit of transfer 
matrix method lies in the fact that the dynamics of 
complicated systems can be simplified into a system of 
algebraic equations. Prohl3 in 1945 suggested the transfer 
matrix method. lund and orcutt4 in 1967 used this method with 
the continuous model for shaft and unbalance in disk taken 
into account. Kirk and Bansal5 in 1975 used the transfer 
matrix method for calculating damped natural frequencies. 
Kang and Tan6 in 1998 investigated discontinuity in shafts 
using this method. As said before in this paper a Continuous 
model is used for the shaft and the gyroscopic effect is also 
taken into account. The most important and effective 
assumptions in this research are investigating the effects of 
bearings and disk thicknesses exactly which would have great 
influences in accuracy of our answers. Figures in results for 
amplitude would prove the thicknesses impacts. So the 
citation of our calculations would be confirmed extensively. 
The key feature of this study is that the thickness of the disk is 
considered and the width of supporting end bearings is also 
modeled.  

II. MODELING PRINCIPLES  
In this analysis the vibration amplitude is assumed to be 

small. The Timoshenko beam theory is used for expressing the 
dynamics of the shaft. This theory assumes a constant 
transversal shear strain at the direction of thickness of the 
beam. To determine the shear forces, a correction factor (K) is 
used. Each section of the shaft is assumed to have two 
translational and two rotational motions about the 
perpendicular axes.   

In this paper the fluid film journal bearing is considered for 
both ends of the shaft. Since the bearings have much more 
damped behavior than the shaft, this effect is neglected for the 
shaft and the motion of shaft is assumed to be undamped. The 
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bearings are modeled as equivalent spring and dampers which 
are applied as boundary conditions to the discretized system. 

The transfer matrix of the shaft, disk, and bearing are obtained 
assuming that the gyroscopic effect is present and the disk has 
a finite thickness. 

A.  Shaft Transfer Matrix 

 An element of the deflected shaft in the yz and xz planes 
are depicted in Figs. 1 and 2, respectively. The subscripts l 
and r correspond to left and right sides of the element. The 
local coordinate system )1,1,1( zyx  sticks to the shaft having 

its 1z  axis in the axial direction of the shaft. 

 
Fig. 1 Element of shaft in zy plane 

 
Fig. 2 Element of shaft in zx plane 

 
The resultant moment vectors for the element is: 
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x
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M
Q

z
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∂⎡ ⎤− +⎢ ⎥∂⎢ ⎥
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⎢ ⎥
⎢ ⎥⎣ ⎦

∑M  (1) 

and the angular momentum vector is 

x x

y
y y

z

I
t

I
t

I

θρ θ

θ
ρ θ

ρ ω
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∂⎢ ⎥= ⎢ ⎥∂⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

H  (2) 

where ω  is the spin velocity and xI  and yI  are the second 

moments of area which are assumed to be equal. Newton’s 
second law for rotation is expressed as; [7]  

∑ = + ×M H Ω H  (3) 
where 

T
yx

z z
θθ

ω
∂⎧ ⎫∂

= −⎨ ⎬
∂ ∂⎩ ⎭

Ω  (4) 

is the angular velocity of the local coordinate system. 
substituting  equs. 1,2 and 4 into equ 3 results in 

2

2

2

2

yx x
y x z

y y x
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M
Q I I

z tt
M

Q I I
z tt

θθ
ρ ρ ω

θ θ
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∂∂ ∂
− + = − +

∂ ∂∂
∂ ∂ ∂
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 (5) 

the resultant external force vector exerted on the element is 

0

x

Y

Q
z

Q
z

∂⎡ ⎤−⎢ ⎥∂⎢ ⎥
∂⎢ ⎥= −⎢ ⎥∂

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑F  (6) 

Applying the Newton’s second law to the element results in 
2 2

2 2, yx QQ x yA A
z zt t

ρ ρ
∂∂ ∂ ∂

− = − =
∂ ∂∂ ∂

 (7) 

Equations 5 and 7 constitute the partial differential equation of 
the shaft. The following equations govern the bending 
moment and shear force in the shaft. [8], [9] 

,

,

y x
x x y x

x y y x

M EI M EI
z z

x yQ KAG Q KAG
z z

θ θ

θ θ

∂ ∂
= =

∂ ∂
∂ ∂⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (8) 

By replacing equ. 8 into equs. 5 and 7 the governing 
differential equations of the shaft in xy and yz planes are 
obtained, which simplifies to: 

4 4 2 4

4 2 2 4

2 3 3

2 2 3

4 4 2 4

4 2 2 4

2 3 3

2 2 3

2 0

2 0

x x x
KG E KEGz z t t

A x y y
EI E KGt z t t

y y y
KG E KEGz z t t

A y x x
EI E KGt z t t

ρ ρ ρ

ρ ρω ρ

ρ ρ ρ

ρ ρω ρ

∂ ∂ ∂⎛ ⎞− + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂

+ + − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂⎛ ⎞− + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ − − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9) 

The general solution to these PDEs are in the form of: 
( ) ( )
( ) ( )

ˆ ˆcos sin
ˆ ˆcos sin

c s

c s

x x z t x z t

y y z t y z t

= Ω + Ω

= Ω + Ω
 (10) 

where Ω̂  is the natural frequency of the system. Substituting 
equ. 10 into equ. 9 results in four ODEs which require that the 
factors of Sin and Cos to be zero in order to have a nontrivial 
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solution. The solution to the above set of ODE is in the form 
of: 

,

,

z z
c c s s

z z
c c s s

x u e x u e

y v e y v e

λ λ

λ λ

= =

= =
 (11) 

By substituting the assumed solution into the four equations 
that have been created, a set of algebraic equations is obtained 
which is not stated here for the sake of brevity. In order to 
have a nontrivial solution the determinant of the coefficient 
matrix should vanish which results in the following 
characteristic equation: 

22 2 4 2 2 2 3

2 2 4 2

2 2 4 2 2 2 3

2 2 4 2

2

2

2
0

2

x x x

x x x

x x x

x x x

A KG I I E I

I KG KGEI KGI

A KG I I E I

I KG KGEI KGI

ρ ρ ρ λ ρ ω

ρ λ λ ρωλ

ρ ρ ρ λ ρ ω

ρ λ λ ρωλ

⎛ ⎞− Ω + Ω + Ω + Ω
×⎜ ⎟⎜ ⎟+ Ω + + Ω⎝ ⎠

⎛ ⎞− Ω + Ω + Ω − Ω
=⎜ ⎟⎜ ⎟+ Ω + − Ω⎝ ⎠

 (12) 

The above equation has the following eight roots: 
1 2 3 4, , ,i iλ λ λ λ± ± ± ± , which result the following 

statements for the four unknowns ( ), , ,s c s cu u v v  

( )
( )

2 1

4 3

, , ,

, , ,
s c c s

s c c s

u v u v for i

u v u v for i

λ λ

λ λ

= = − ± ±⎧⎪
⎨

= − = ± ±⎪⎩
 (13) 

Using the obtained roots, the displacement amplitudes may be 
expressed as; 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 1 3 2 4 2

5 3 6 3 7 4 8 4
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cosh sinh cos sin

cosh sinh cos sin

cosh sinh cos sin

cosh sinh cos sin

cosh sinh cos si

c

s

c

x b z b z b z b z

b z b z b z b z

x b z b z b z b z

b z b z b z b z

y b z b z b z b

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ

= + + +

+ + + +

= + + +

+ + + +

= − − − − ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

5 3 6 3 7 4 8 4

9 1 10 1 11 2 12 2

13 3 14 3 15 4 16 4

n

cosh sinh cos sin

cosh sinh cos sin

cosh sinh cos sin
s

z

b z b z b z b z

y b z b z b z b z

b z b z b z b z

λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

+ + + +

= + + +

− − − −

 

(14) 

All the ib coefficients in the above equation are collected into 
the vector B. 
{ } { }16 1ib

×
=B  (15) 

To obtain the transfer matrix of the shaft it is necessary to 
express the state vector in one side of the element in terms of 
the state vector in the other side. The state vector for the shaft 
is: 

{

}
c s c s xc xs yc ys

T
xc xs yc ys xc xs yc ys

x x y y

M M M M Q Q Q Q

θ θ θ θ=S

 

(16) 

where s and c indices correspond to the sin and cos 
expressions as stated for x and y in equ. 10.  
A vector of position derivatives is also defined as; 

{

}
c c c c s s s s

T
c c c c s s s s

x x x x x x x x

y y y y y y y y

′ ′′ ′′′ ′ ′′ ′′′=

′ ′′ ′′′ ′ ′′ ′′′

W
 (17) 

At two ends of the element, the above vector is equal to: 
{ } [ ]{ }
{ } [ ]{ }

0 0z

z L L

=

=

=

=

W A B

W A B
 (18) 

where [ ]0A  and [ ]LA  are given in appendix 1. 

By omitting the { }B vector in equs. 16 we conclude that; 

{ } [ ][ ] { } [ ]{ }1
0 0z L L z L z

−
= = == =W A A W A W  (19) 

By expanding the components in the W  vector, the relation 
between W  and S  may be found. 

1, , ( )

1 ( 2 ) ( )

1, , ( )

1 ( 2 ) ( )

yx
y

x

x
x x y x x y

x

y x
x

x

y
y x x x y x

x

MQ
x x x x Ax

KAG EI KAG

Q
x Q I I

EI KG KAG
Q M

y y y y Ay
KAG EI KAG

Q
y Q I I

EI KG KAG

θ ρ

ρρ θ ρ ωθ θ

θ ρ

ρρ θ ρ ωθ θ

′ ′′= = − = − −

′′′ = + + + −

′ ′′= = − = − −

′′′ = + − + −

 
 

(20) 

By collecting the above relations into matrix form, the 
following relation is resulted 
{ } [ ]{ }=W F S  (21) 
where [ ]F  can be calculated simply. Using equs. 19 and 21 
the state vector in one side of the element may be related to 
that of the other side as follows: 
{ } [ ] { } [ ] [ ]{ }

[ ] [ ][ ]{ } [ ]{ }

1 1
0

1
0 0

z L z L z

z z

− −
= = =

−
= =

= =

= =

S F W F A W

F A F S T S
 (22) 

So the transfer matrix of the shaft is obtained from. 
[ ] [ ] [ ][ ] [ ]1 1

016 16 L
− −

×
=T F A A F  (23) 

 

B.  Disk Transfer Matrix 

 The disk free body diagram is depicted in Fig. 3. 

Q xl yl(Q  )

(M  )xlylM

h
Myr xr(M  )

(Q  )yrxrQ

0 y x(0  )

z

x (y)

 
Fig. 3 Free body diagram of disk 

 

Here it is assumed that the disk is nonhomogeneous such 
that its center of mass is located by a small distance r off the 
geometric center. It is also assumed that r is such small that its 
effect on the inertia tensor may be neglected. So the inertia 
tensor of the disk is written as: 
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0 0
0 0
0 0 2

d

d

d

I
I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I

 

(24) 

Where dI  is the mass moment of inertia of the disk about an 
axis passing through its center of gravity (CG). Again the 
Newton’s second law is used to obtain the equations of motion 
for the disk. Application of Newton’s second law to 
translational motion of the disk results in: 

2

2

cos
2

sin
2

l r
xl xr

l r
xl xr

x x
r t Q Q

y y
r t Q Q

ω ω

ω ω

+
− = −

+
− = −

 

(25) 

Newton’s second law in rotational motion is given in equ. 3. 
The angular momentum of disk is 

= ×H I Ω  (26) 

where Ω is the same as than in equ. 4. The obtained angular 
momentum should be transformed into the global coordinate 
system using a rotation matrix ( (ωωtR . )))) 

( ) ( ( ) )t tω ω∑ = − + × −M R H Ω R H  (27) 

 The resultant of moment vectors acting on the disk is: 

( )
2

( )
2
0

x xr y yr

yr y x yr

hM M Q Q

hM M Q Q

⎧ ⎫− + × +⎪ ⎪
⎪ ⎪
⎪ ⎪∑ = − + × +⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

M

 

(28) 

Substituting equs.  26 and 28 into equ. 27 yields the equation 
of motion for rotation of the disk. Again by writing the 
degrees of freedom as in equ. 10, the above governing 
differential equations are simplified to some algebraic 
equations. Using the following additional equations; 

,

,
xr xl yr yl

r l xl r l ylx x h y y h

θ θ θ θ

θ θ

= =

= + = +  
(29) 

the state vector at both ends of the disk may now be related 
and the transfer matrix is obtained. 

C.  Bearing Transfer Matrix 

 A linear model is assumed for bearings which uses two 
equivalent pairs of spring and dampers for each bearing as 
shown in Fig. 4. 

0y

yrM

M yl

xlQ

Qxr

tb

K/2 K/2C/2 C/2

xb

X (Y)

Z  
Fig. 4 Bearing model 

In this figure bt  represents the length of the shaft that lies in 

the baring and bx or by  is the foundation displacement. This 
model assumes that each bearing can withstand moment in 
addition to transversal load. In a simplified model we assume 
that the bearing force vector can be written as; 

ˆ ˆ( , ) ( , )F f x y i g x y j= +                                                        (30) 

where  

( , )

( , )
xx xy

yx yy

f x y k x k y

g x y k x k y

= +⎧⎪
⎨ = +⎪⎩

                                                         (31) 

the force and moment resultants are as follows; 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

x xl xr

xy xyxx xx
l b l b r b r b

xy xyxx xx
l b l b r b r b

y yl yr

yy yx yy yx
l b l b r b r b

yy xy yy yx
l b l b r b r b

y

F Q Q
k kk k

x x y y x x y y

c cc c
x x y y x x y y

F Q Q

k k k k
y y x x y y x x

c c c c
y y x x y y x x

M

= −

− − − − − − − −

− − − − − − − −

= −

− − − − − − − −

− − − − − − − −

∑

∑

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

( )

4

2 4 4

4 4 4

4 4

4

2 4 4

4 4

xx
yr yl l b b

xyb xx
xl xr l b b r b b

xy xyxx
r b b l b b l b b

xyxx
r b b r b b

yy
x xl xr l b b

yx yyb
yl yr l b b r b b

yx yy
r b b

k
M M x x t

kt k
Q Q y y t x x t

k cc
y y t x x t y y t

cc
x x t y y t

k
M M M y y t

k kt
Q Q x x t y y t

k c
x x t

= − + −

− − + − − −

− − + − + −

− − − −

= − − −

+ − − − + −

+ − −

∑

∑

( ) ( )

( ) ( )

4

4 4

yx
l b b l b b

yy yx
r b b r b b

c
y y t x x t

c c
y y t x x t

− − −

+ − + −

   (32) 
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Using the Newton’s second law in rotation and translation 
and by using the following geometrical additional equations; 

,

,
xr xl x yr yl y

r l b y r l b xx x t y y t

θ θ θ θ θ θ

θ θ

= = = =

= + = +
                                     (33) 

The governing differential equation of the bearing is 
obtained. Again by assuming harmonic motion for all degrees 
of freedom (as equ. 10), the governing algebraic equation is 
obtained which is used to calculate the transfer matrix of the 
bearing. 

To obtain the transfer matrix between two desired points of 
the system, the transfer matrices of the individual elements 
located between the points should be multiplied consequently. 
If the transfer matrix of the whole system is available, 
applying the boundary conditions on the state vector of both 
ends will result in a relation among the unknown properties of 
the system. 

III. RESULTS 

 To investigate the applicability of this method in dynamic 
analysis of rotor-bearing systems, an example is provided. A 
shaft carrying several disks is supported on two bearings on 
both ends as shown in Fig. 5. The required properties are 
given in the figure. 

 
Fig. 5 Schematic figure of a rotor 

 
In this example a flexible shaft is carrying three similar 

disks and two bearings are supporting the shaft. The 
parameters of the system and its parts are given in Table I. 

 
 

TABLE I 
PARAMETERS OF THE ROTOR-BEARING SYSTEM 

Modulus of elasticity  ( )2/N cm  72.07 10×  
Shear modulus  ( )2/N cm  71.29 10×  

Density   ( )3/kg cm  37.75 10−×  
Disc mass   ( )kg  13.47 

Polar moment of inertia   
( )2.kg cm  1020 

Mass moment of inertia   ( ).kg cm  512 
Unbalance of disc     ( ).kg cm  0.01347 

Shaft diameter      ( )cm  4 
 

By use of Fig. 5 and Table I informations and also applying 
transfer matrix different conditions are probed and their 
results are shown in Figs. 6, 7, and 8. 

Three different conditions are as follow: 
 

• Ignoring disk and bearing thickness 
• Ignoring bearing thickness and considering it for disk 
• Consdering thikness for both bearing and disk 

  
For the first one the amplitude-rotational speed curve in 

Fig. 6 is obtained. 
 

0.00E+00
1.00E-03
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m
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 (m
m

)

 
Fig. 6 Response of the system when ignoring the disk thickness 
 
In the above figure the pick amplitude corresponds to the 

first natural frequency of the system which agrees with 
approximate methods available such as the Dunkerley’s 
method.  

For the second one when the thickness of the disk is also 
taken into account, the response curve changes significantly as 
depicted in Fig. 7. 
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pl
itu
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 (m

m
)

 
Fig. 7 Response of the system when considering the disk thickness 

 
It is shown that the first natural frequency of the system has 

increased compared to the previous case. The increase of the 
natural frequency is attributed to the fact that by considering 
the disk width, the effective length of the shaft decreases and 
hence the system becomes more rigid. The decrease in the 
amplitude of vibration is another consequence of thickening 
the disk. 

Third state which is the most cmpleted and real one is 
achievable when both the disk and bearing thicknesses are 
taken into account. Fig. 8 corresponds to this case. 
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Fig. 8 Response of the system when considering both the disk and 

bearing thicknesses 
 
It is observed from Fig. 8 that by considering the width of 

bearing the natural frequency increases again while the 
amplitude of vibration has decreased. 

IV. CONCLUSION 
In this paper the matrix transfer method is applied to rotor-

bearing system. The transfer matrix of individual elements 
including the shaft, disk and the bearing are obtained. The 
merit of this approach over the conventional approximate 
methods is that the thickness of the disks and the bearings may 
also be considered. It is shown that the thickness of disks and 
bearings have considerable effect on the vibration behavior of 
the system. So by using material of this research more 
accurate answers would be achievable for different desired 
systems. This method can be applied to rotor-bearing systems 
with various configurations.  
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APPENDIX 1- SOME MATRICES 
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