Search results for: Sensor device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1466

Search results for: Sensor device

926 MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures

Authors: Murat Dicleli, Ali Salem Milani

Abstract:

In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multidirectional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs.

Keywords: Seismic, isolation, damper, adaptive stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
925 An Efficient Digital Baseband ASIC for Wireless Biomedical Signals Monitoring

Authors: Kah-Hyong Chang, Xin Liu, Jia Hao Cheong, Saisundar Sankaranarayanan, Dexing Pang, Hongzhao Zheng

Abstract:

A digital baseband Application-Specific Integrated Circuit (ASIC) (yclic Redundancy Checkis developed for a microchip transponder to transmit signals and temperature levels from biomedical monitoring devices. The transmission protocol is adapted from the ISO/IEC 11784/85 standard. The module has a decimation filter that employs only a single adder-subtractor in its datapath. The filtered output is coded with cyclic redundancy check and transmitted through backscattering Load Shift Keying (LSK) modulation to a reader. Fabricated using the 0.18-μm CMOS technology, the module occupies 0.116 mm2 in chip area (digital baseband: 0.060 mm2, decimation filter: 0.056 mm2), and consumes a total of less than 0.9 μW of power (digital baseband: 0.75 μW, decimation filter: 0.14 μW).

Keywords: Biomedical sensor, decimation filter, Radio Frequency Integrated Circuit (RFIC) baseband, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
924 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: Contact area, energy absorbing capacity, hysteresis, seismic isolation device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
923 Planar Plasmonic Terahertz Waveguides for Sensor Applications

Authors: Maidul Islam, Dibakar Roy Chowdhury, Gagan Kumar

Abstract:

We investigate sensing capabilities of a planar plasmonic THz waveguide. The waveguide is comprised of one dimensional array of periodically arranged sub wavelength scale corrugations in the form of rectangular dimples in order to ensure the plasmonic response. The THz waveguide transmission is observed for polyimide (as thin film) substance filling the dimples. The refractive index of the polyimide film is varied to examine various sensing parameters such as frequency shift, sensitivity and Figure of Merit (FoM) of the fundamental plasmonic resonance supported by the waveguide. In efforts to improve sensing characteristics, we also examine sensing capabilities of a plasmonic waveguide having V shaped corrugations and compare results with that of rectangular dimples. The proposed study could be significant in developing new terahertz sensors with improved sensitivity utilizing the plasmonic waveguides.

Keywords: Terahertz, plasmonic, sensor, sub-wavelength structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
922 First Aid Application on Mobile Device

Authors: Komwit Surachat, Supasit Kajkamhaeng, Kasikrit Damkliang, Watanyoo Tiprat, Taninnuch Wacharanimit

Abstract:

An accident is an unexpected and unplanned situation that happens and affects human in a negative outcome. The accident can cause an injury to a human biological organism. Thus, the provision of initial care for an illness or injury is very important move to prepare the patients/victims before sending to the doctor. In this paper, a First Aid Application is developed to give some directions for preliminary taking care of patient/victim via Android mobile device. Also, the navigation function using Google Maps API is implemented in this paper for searching a suitable path to the nearest hospital. Therefore, in the emergency case, this function can be activated and navigate patients/victims to the hospital with the shortest path.

Keywords: First Aid Application, Android, Google Maps API, Navigation System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6002
921 A Statistical Identification Approach by the Boundary Field Changes

Authors: Rumena D. Stancheva, Ilona I. Iatcheva

Abstract:

In working mode some unexpected changes could be arise in inner structure of electromagnetic device. They influence modification in electromagnetic field propagation map. The field values at an observed boundary are also changed. The development of the process has to be watched because the arising structural changes would provoke the device to be gone out later. The probabilistic assessment of the state is possible to be made. The numerical assessment points if the resulting changes have only accidental character or they are due to the essential inner structural disturbances. The presented application example is referring to the 200MW turbine-generator. A part of the stator core end teeth zone is simulated broken. Quasi three-dimensional electromagnetic and temperature field are solved applying FEM. The stator core state diagnosis is proposed to be solved as an identification problem on the basis of a statistical criterion.

Keywords: Identification, structural disturbance, statistical criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
920 Route Training in Mobile Robotics through System Identification

Authors: Roberto Iglesias, Theocharis Kyriacou, Ulrich Nehmzow, Steve Billings

Abstract:

Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.

Keywords: Mobile robotics, system identification, non-linear modelling, NARMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
919 Doping Profile Measurement and Characterization by Scanning Capacitance Microscope for PocketImplanted Nano Scale n-MOSFET

Authors: Muhibul Haque Bhuyan, Farseem Mannan Mohammedy, Quazi Deen Mohd Khosru

Abstract:

This paper presents the doping profile measurement and characterization technique for the pocket implanted nano scale n-MOSFET. Scanning capacitance microscopy and atomic force microscopy have been used to image the extent of lateral dopant diffusion in MOS structures. The data are capacitance vs. voltage measurements made on a nano scale device. The technique is nondestructive when imaging uncleaved samples. Experimental data from the published literature are presented here on actual, cleaved device structures which clearly indicate the two-dimensional dopant profile in terms of a spatially varying modulated capacitance signal. Firstorder deconvolution indicates the technique has much promise for the quantitative characterization of lateral dopant profiles. The pocket profile is modeled assuming the linear pocket profiles at the source and drain edges. From the model, the effective doping concentration is found to use in modeling and simulation results of the various parameters of the pocket implanted nano scale n-MOSFET. The potential of the technique to characterize important device related phenomena on a local scale is also discussed.

Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Scanning Capacitance Microscope, Atomic Force Microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
918 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach

Authors: Uttam Vijay, Nitin Gupta

Abstract:

Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.

Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
917 The Design of PFM Mode DC-DC Converter with DT-CMOS Switch

Authors: Jae-Chang Kwak, Yong-Seo Koo

Abstract:

The high efficiency power management IC (PMIC) with switching device is presented in this paper. PMIC is controlled with PFM control method in order to have high power efficiency at high current level. Dynamic Threshold voltage CMOS (DT-CMOS) with low on-resistance is designed to decrease conduction loss. The threshold voltage of DT-CMOS drops as the gate voltage increase, resulting in a much higher current handling capability than standard MOSFET. PFM control circuits consist of a generator, AND gate and comparator. The generator is made to have 1.2MHz oscillation voltage. The DC-DC converter based on PFM control circuit and low on-resistance switching device is presented in this paper.

Keywords: DT-CMOS, PMIC, PFM, DC-DC converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203
916 Power Optimization Techniques in FPGA Devices: A Combination of System- and Low-Levels

Authors: Pawel P. Czapski, Andrzej Sluzek

Abstract:

This paper presents preliminary results regarding system-level power awareness for FPGA implementations in wireless sensor networks. Re-configurability of field programmable gate arrays (FPGA) allows for significant flexibility in its applications to embedded systems. However, high power consumption in FPGA becomes a significant factor in design considerations. We present several ideas and their experimental verifications on how to optimize power consumption at high level of designing process while maintaining the same energy per operation (low-level methods can be used additionally). This paper demonstrates that it is possible to estimate feasible power consumption savings even at the high level of designing process. It is envisaged that our results can be also applied to other embedded systems applications, not limited to FPGA-based.

Keywords: Power optimization, FPGA, system-level designing, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
915 Thermal Stability of a Vertical SOI-Based Capacitorless One-Transistor DRAM with Trench-Body Structure

Authors: Po-Hsieh Lin, Jyi-Tsong Lin

Abstract:

A vertical SOI-based MOSFET with trench body structure operated as 1T DRAM cell at various temperatures has been studied and investigated. Different operation temperatures are assigned for the device for its performance comparison, thus the thermal stability is carefully evaluated for the future memory device applications. Based on the simulation, the vertical SOI-based MOSFET with trench body structure demonstrates the electrical characteristics properly and possess conspicuous kink effect at various operation temperatures. Transient characteristics were also performed to prove that its programming window values and retention time behaviors are acceptable when the new 1T DRAM cell is operated at high operation temperature.

Keywords: SOI, 1T DRAM, thermal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
914 Highly Efficient Silicon Photomultiplier for Positron Emission Tomography Application

Authors: Fei Sun, Ning Duan, Guo-Qiang Lo

Abstract:

A silicon photomultiplier (SiPM) was designed, fabricated and characterized. The SiPM was based on SACM (Separation of Absorption, Charge and Multiplication) structure, which was optimized for blue light detection in application of positron emission tomography (PET). The achieved SiPM array has a high geometric fill factor of 64% and a low breakdown voltage of about 22V, while the temperature dependence of breakdown voltage is only 17mV/°C. The gain and photon detection efficiency of the device achieved were also measured under illumination of light at 405nm and 460nm wavelengths. The gain of the device is in the order of 106. The photon detection efficiency up to 60% has been observed under 1.8V overvoltage.

Keywords: Photon Detection Efficiency, Positron Emission Tomography, Silicon Photomultiplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
913 Sensing Characteristics to Acid Vapors of a TPPS Coated Fiber Optic: A Preliminary Analysis

Authors: A. Bahrampour, A. Iadicicco, G. De Luca, M. Giordano, A. Cutolo, L. Monsù Scolaro, A. Cusano

Abstract:

In this work we report on preliminary analysis of a novel optoelectronic gas sensor based on an optical fiber integrated with a tetrakis(4-sulfonatophenyl)porphyrin (TPPS) thin film. The sensitive materials are selectively deposited on the core region of a fiber tip by UV light induced deposition technique. A simple and cheap process which can be easily extended to different porphyrin derivatives. When the TPPS film on the fiber tip is exposed to acid and/or base vapors, dramatic changes occur in the aggregation structure of the dye molecules in the film, from J- to H-type, resulting in a profound modification of their corresponding reflectance spectra. From the achieved experimental results it is evident that the presence of intense and narrow band peaks in the reflected spectra could be monitored to detect hazardous vapors.

Keywords: Optical fiber sensor, Porphyrins, Thin films UV induced deposition, TPPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
912 Silicon Nanowire for Thermoelectric Applications: Effects of Contact Resistance

Authors: Y. Li, K. Buddharaju, N. Singh, G. Q. Lo, S. J. Lee

Abstract:

Silicon nanowire (SiNW) based thermoelectric device (TED) has potential applications in areas such as chip level cooling/ energy harvesting. It is a great challenge however, to assemble an efficient device with these SiNW. The presence of parasitic in the form of interfacial electrical resistance will have a significant impact on the performance of the TED. In this work, we explore the effect of the electrical contact resistance on the performance of a TED. Numerical simulations are performed on SiNW to investigate such effects on its cooling performance. Intrinsically, SiNW individually without the unwanted parasitic effect has excellent cooling power density. However, the cooling effect is undermined with the contribution of the electrical contact resistance.

Keywords: Thermoelectric, silicon, nanowire, electrical contact resistance, parasitics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
911 An Embedded System Design for SRAM SEU Test

Authors: Kyoung Kun Lee, Soongyu Kwon, Jong Tae Kim

Abstract:

An embedded system for SEU(single event upset) test needs to be designed to prevent system failure by high-energy particles during measuring SEU. SEU is a phenomenon in which the data is changed temporary in semiconductor device caused by high-energy particles. In this paper, we present an embedded system for SRAM(static random access memory) SEU test. SRAMs are on the DUT(device under test) and it is separated from control board which manages the DUT and measures the occurrence of SEU. It needs to have considerations for preventing system failure while managing the DUT and making an accurate measurement of SEUs. We measure the occurrence of SEUs from five different SRAMs at three different cyclotron beam energies 30, 35, and 40MeV. The number of SEUs of SRAMs ranges from 3.75 to 261.00 in average.

Keywords: embedded system, single event upset, SRAM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
910 FEA- Aided Design, Optimization and Development of an Axial Flux Motor for Implantable Ventricular Assist Device

Authors: Neethu S., Shinoy K.S., A.S. Shajilal

Abstract:

This paper presents the optimal design and development of an axial flux motor for blood pump application. With the design objective of maximizing the motor efficiency and torque, different topologies of AFPM machine has been examined. Selection of optimal magnet fraction, Halbach arrangement of rotor magnets and the use of Soft Magnetic Composite (SMC) material for the stator core results in a novel motor with improved efficiency and torque profile. The results of the 3D Finite element analysis for the novel motor have been shown.

Keywords: Axial flux motor, Finite Element Methods, Halbach array, Left Ventricular Assist Device, Soft magnetic composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
909 Development of an Autonomous Friction Gripper for Industrial Robots

Authors: Majid Tolouei-Rad, Peter Kalivitis

Abstract:

Industrial robots become useless without end-effectors that for many instances are in the form of friction grippers. Commonly friction grippers apply frictional forces to different objects on the basis of programmers- experiences. This puts a limitation on the effectiveness of gripping force that may result in damaging the object. This paper describes various stages of design and development of a low cost sensor-based robotic gripper that would facilitate the task of applying right gripping forces to different objects. The gripper is also equipped with range sensors in order to avoid collisions of the gripper with objects. It is a fully functional automated pick and place gripper which can be used in many industrial applications. Yet it can also be altered or further developed in order to suit a larger number of industrial activities. The current design of gripper could lead to designing completely automated robot grippers able to improve the efficiency and productivity of industrial robots.

Keywords: Control system, end-effector, robot, sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2892
908 Analytical Modeling of Channel Noise for Gate Material Engineered Surrounded/Cylindrical Gate (SGT/CGT) MOSFET

Authors: Pujarini Ghosh A, Rishu Chaujar B, Subhasis Haldar C, R.S Gupta D, Mridula Gupta E

Abstract:

In this paper, an analytical modeling is presentated to describe the channel noise in GME SGT/CGT MOSFET, based on explicit functions of MOSFETs geometry and biasing conditions for all channel length down to deep submicron and is verified with the experimental data. Results shows the impact of various parameters such as gate bias, drain bias, channel length ,device diameter and gate material work function difference on drain current noise spectral density of the device reflecting its applicability for circuit design applications.

Keywords: Cylindrical/Surrounded gate (SGT/CGT) MOSFET, Gate Material Engineering (GME), Spectral Noise and short channeleffect (SCE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
907 Design and Application of NFC-Based Identity and Access Management in Cloud Services

Authors: Shin-Jer Yang, Kai-Tai Yang

Abstract:

In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.

Keywords: Cloud service, multi-tenancy, NFC, IAM, mobile device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
906 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
905 Earthquake Analysis of Reinforce Concrete Framed Structures with Added Viscous Dampers

Authors: F. Hejazi, J. Noorzaei, M. S. Jaafar, A. A. Abang Abdullah

Abstract:

This paper describes the development of a numerical finite element algorithm used for the analysis of reinforced concrete structure equipped with shakes energy absorbing device subjected to earthquake excitation. For this purpose a finite element program code for analysis of reinforced concrete frame buildings is developed. The performance of developed program code is evaluated by analyzing of a reinforced concrete frame buildings model. The results are show that using damper device as seismic energy dissipation system effectively can reduce the structural response of framed structure during earthquake occurrence.

Keywords: Viscous Damper, finite element, program coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
904 Generation of 3D Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel de Luis Ruiz, Javier Sedano Cibrián, Rubén Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimize the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain). To this end, a flight with this type of sensors has been planned, developed and analyzed. It has been applied to the archaeological site of Juliobriga (Cantabria, Spain). A strong dependence of the thermal sensor on the GSD, and the capability of this technique to interpret underground materials. This research allows to state that the thermal nature of the site does not provide main information about the site itself, but with combination with other types of information, such as the DEM, the typology of materials, etc., can produce very positive results with respect to the exploration and knowledge of the site. 

Keywords: process optimization, RGB models, thermal models, UAV, workflow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
903 Tree-on-DAG for Data Aggregation in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.

Keywords: Aggregation, Packet Merging, Query Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
902 Effect of Low Frequency Memory on High Power 12W LDMOS Transistors Intermodulation Distortion

Authors: A. Alghanim, J. Benedikt, P. J. Tasker

Abstract:

The increasing demand for higher data rates in wireless communication systems has led to the more effective and efficient use of all allocated frequency bands. In order to use the whole bandwidth at maximum efficiency, one needs to have RF power amplifiers with a higher linear level and memory-less performance. This is considered to be a major challenge to circuit designers. In this thesis the linearity and memory are studied and examined via the behavior of the intermodulation distortion (IMD). A major source of the in-band distortion can be shown to be influenced by the out-of-band impedances presented at either the input or the output of the device, especially those impedances terminated the low frequency (IF) components. Thus, in order to regulate the in-band distortion, the out of-band distortion must be controllable. These investigations are performed on a 12W LDMOS device characterised at 2.1 GHz within a purpose built, high-power measurement system.

Keywords: Low Frequency Memory, IntermodulationDistortion (IMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
901 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters

Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud

Abstract:

Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.

Keywords: Energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
900 Overview of CARDIOSENSOR Project on the Development of a Nanosensor for Assessing the Risk of Cardiovascular Disease

Authors: A.C. Duarte, C.I.L. Justino, K. Duarte, A.C. Freitas, R. Pereira, P. Chaves, P. Bettencourt, S. Cardoso, T.A.P. Rocha-Santos

Abstract:

This paper aims at overviewing the topics of a research project (CARDIOSENSOR) on the field of health sciences (biomaterials and biomedical engineering). The project has focused on the development of a nanosensor for the assessment of the risk of cardiovascular diseases by the monitoring of C-reactive protein (CRP), which has been currently considered as the best validated inflammatory biomarker associated to cardiovascular diseases. The project involves tasks such as: 1) the development of sensor devices based on field effect transistors (FET): assembly, optimization and validation; 2) application of sensors to the detection of CRP in standard solutions and comparison with enzyme-linked immunosorbent assay (ELISA); and 3) application of sensors to real samples such as blood and saliva and evaluation of their ability to predict the risk of cardiovascular disease.

Keywords: Carbon nanotubes field effect transistors, cardiovascular diseases, C-reactive protein, sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
899 A Real-Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitrios E. Kontaxis, George Litainas, Dimitrios P. Ptochos, Vaggelis P. Ptochos, Sotirios P. Ptochos, Dimitrios Beletsis, Konstantinos Kritikakis, Milan Sunaric

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination and sustainability of the supply chain procedures. The technology, the features and the characteristics of a complete, proprietary system, including hardware, firmware and software tools - developed in the context of a co-funded R&D program - are addressed and presented in this paper. 

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 634
898 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. In this study, we developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, we present an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: Indoor positioning, ultra-wideband, error correction, Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
897 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3869