Search results for: structural and thermal analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10171

Search results for: structural and thermal analysis

9691 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution

Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie

Abstract:

Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.

Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
9690 Development of the Measurement Apparatus for the Effective Thermal Conductivity of Core Material

Authors: Jongmin Kim, Tae-Ho Song

Abstract:

A measurement apparatus is designed and fabricated to measure the effective thermal conductivity (keff) of a VIP (vacuum insulation panel) core specimen under various vacuum states and external loads. The apparatus consists of part for measuring keff, and parts for controlling external load and vacuum condition. Uncertainty of the apparatus is validated by measuring the standard reference material and comparing with commercial devices with VIP samples. Assessed uncertainty is maximum 2.5 % in case of the standard reference material, 10 % in case of VIP samples. Using the apparatus, keff of glass paper under various vacuum levels is examined.

Keywords: Effective thermal conductivity, guarded hot plate method, vacuum insulation panel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
9689 Expectation-Confirmation Model of Information System Continuance: A Meta-Analysis

Authors: Hui-Min Lai, Chin-Pin Chen, Yung-Fu Chang

Abstract:

The expectation-confirmation model (ECM) is one of the most widely used models for evaluating information system continuance, and this model has been extended to other study backgrounds, or expanded with other theoretical perspectives. However, combining ECM with other theories or investigating the background problem may produce some disparities, thus generating inaccurate conclusions. Habit is considered to be an important factor that influences the user’s continuance behavior. This paper thus critically examines seven pairs of relationships from the original ECM and the habit variable. A meta-analysis was used to tackle the development of ECM research over the last 10 years from a range of journals and conference papers published in 2005–2014. Forty-six journal articles and 19 conference papers were selected for analysis. The results confirm our prediction that a high effect size for the seven pairs of relationships was obtained (ranging from r=0.386 to r=0.588). Furthermore, a meta-analytic structural equation modeling was performed to simultaneously test all relationships. The results show that habit had a significant positive effect on continuance intention at p<=0.05 and that the six other pairs of relationships were significant at p<0.10. Based on the findings, we refined our original research model and an alternative model was proposed for understanding and predicting information system continuance. Some theoretical implications are also discussed.

Keywords: Expectation-confirmation theory, expectation- confirmation model, meta-analysis, meta-analytic structural equation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
9688 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: Direct steam generation, parabolic trough collectors, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
9687 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin

Abstract:

In today’s business environment, companies should  make strategic decisions to gain sustainable competitive advantage.  Order selection is a crucial issue among these decisions especially for  steel production industry. When the companies allocate a high  proportion of their design and production capacities to their ongoing  projects, determining which customer order should be chosen among  the potential orders without exceeding the remaining capacity is the  major critical problem. In this study, it is aimed to identify and  prioritize the evaluation factors for the customer order selection  problem. Conjoint Analysis is used to examine the importance level  of each factor which is determined as the potential profit rate per unit  of time, the compatibility of potential order with available capacity,  the level of potential future order with higher profit, customer credit  of future business opportunity, and the negotiability level of  production schedule for the order.

 

Keywords: Conjoint analysis, order prioritization, profit management, structural steel firm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
9686 A Study on Performance-Based Design Analysis for Vertical Extension of Apartment Units

Authors: Minsun Kim, Ki-Sun Choi, Hyun-Jee Lee, Young-Chan You

Abstract:

There is no reinforcement example for the renovation of the vertical and horizontal extension to existing building structures which is a shear wall type in apartment units in Korea. Among these existing structures, the structures which are shear wall type are rare overseas, while Korea has many shear wall apartment units. Recently, in Korea, a few researchers are trying to confirm the possibility of the vertical extension in existing building with shear walls. This study evaluates the possibility of the renovation by applying performance-based seismic design to existing buildings with shear walls in the analysis phase of the structure. In addition, force-based seismic design, used by general structural engineers in Korea, is carried out to compare the amount of reinforcement of walls, which is a main component of wall structure. As a result, we suggest that performance-based design obtains more economical advantages than force-based seismic design.

Keywords: Vertical extension, performance-based design, renovation, shear wall structure, structural analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
9685 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System

Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López

Abstract:

Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.

Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
9684 The Low-Cost Design and 3D Printing of Structural Knee Orthotics for Athletic Knee Injury Patients

Authors: Alexander Hendricks, Sean Nevin, Clayton Wikoff, Melissa Dougherty, Jacob Orlita, Rafiqul Noorani

Abstract:

Knee orthotics play an important role in aiding in the recovery of those with knee injuries, especially athletes. However, structural knee orthotics is often very expensive, ranging between $300 and $800. The primary reason for this project was to answer the question: can 3D printed orthotics represent a viable and cost-effective alternative to present structural knee orthotics? The primary objective for this research project was to design a knee orthotic for athletes with knee injuries for a low-cost under $100 and evaluate its effectiveness. The initial design for the orthotic was done in SolidWorks, a computer-aided design (CAD) software available at Loyola Marymount University. After this design was completed, finite element analysis (FEA) was utilized to understand how normal stresses placed upon the knee affected the orthotic. The knee orthotic was then adjusted and redesigned to meet a specified factor-of-safety of 3.25 based on the data gathered during FEA and literature sources. Once the FEA was completed and the orthotic was redesigned based from the data gathered, the next step was to move on to 3D-printing the first design of the knee brace. Subsequently, physical therapy movement trials were used to evaluate physical performance. Using the data from these movement trials, the CAD design of the brace was refined to accommodate the design requirements. The final goal of this research means to explore the possibility of replacing high-cost, outsourced knee orthotics with a readily available low-cost alternative.

Keywords: Knee Orthotics, 3D printing, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
9683 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: Reheating Furnace, Steel Slab, Radiative Heat Transfer, WSGGM, Emissivity, Residence Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4154
9682 Considering the Effect of Semi-Rigid Connection in Steel Frame Structures for Progressive Collapse

Authors: Fooad Karimi Ghaleh Jough, Mohsen Soori

Abstract:

Today, the occurrence of progressive failure in structures has become a challenging issue, requiring the presentation of suitable solutions for structural resistance to this phenomenon. It is also necessary to evaluate the vulnerability of existing and under-construction buildings to progressive failure. The kind of lateral load-resisting system the building and its connections have is one of the most significant and influential variables in structural resistance to the risk of progressing failure. Using the "Alternative Path" approach suggested by the GSA2003 and UFC2013 recommendations, different configurations of semi-rigid connections against progressive failure are offered in this study. In order to do this, the Opensees program was used to model nine distinct semi-rigid connection configurations on a three-story Special Area of Conservation (SAC) structure, accounting for the impact of connection stiffness. Then, using nonlinear dynamic analysis, the effects of column removal were explored in two scenarios: corner column removal and middle column removal on the first level. Nonlinear static analysis results showed that when a column is removed, structures with semi-rigid connections experience larger displacements, which result in the construction of a plastic hinge. Furthermore, it was clear from the findings of the nonlinear static analysis that the possibility of progressive failure increased with the number of semi-rigid connections in the structure.

Keywords: Semi-rigid, nonlinear static analysis, progressive collapse, alternative path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56
9681 Thermal Performance of an Air Heating Storing System

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.

Keywords: Solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
9680 Thermodynamic Performance Assessment of Steam-Injection Gas-Turbine Systems

Authors: Kyoung Hoon Kim, Giman Kim

Abstract:

The cycles of the steam-injection gas-turbine systems are studied. The analyses of the parametric effects and the optimal operating conditions for the steam-injection gas-turbine (STIG) system and the regenerative steam-injection gas-turbine (RSTIG) system are investigated to ensure the maximum performance. Using the analytic model, the performance parameters of the system such as thermal efficiency, fuel consumption and specific power, and also the optimal operating conditions are evaluated in terms of pressure ratio, steam injection ratio, ambient temperature and turbine inlet temperature (TIT). It is shown that the computational results are presented to have a notable enhancement of thermal efficiency and specific power.

Keywords: gas turbine, RSTIG, steam injection, STIG, thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
9679 Urban Search and Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures

Authors: Abid I. Abu-Tair, Gavin M. Wilde, John M. Kinuthia

Abstract:

Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result there is always a risk that they themselves could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of structural damage that may been countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to better judge and quantify risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk, so that they themselves do not become victims.

Keywords: Damaged and collapsed building structures, life safety, quantifying risk, search and rescue personnel, structural assessments in the field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
9678 The Temperature Range in the Simulation of Residual Stress and Hot Tearing During Investment Casting

Authors: Saeid Norouzi, Ali Shams, Hassan Farhangi, Alireza Darvish

Abstract:

Hot tear cracking and residual stress are two different consequences of thermal stress both of which can be considered as casting problem. The purpose of the present study is simulation of the effect of casting shape characteristic on hot tearing and residual stress. This study shows that the temperature range for simulation of hot tearing and residual stress are different. In this study, in order to study the development of thermal stress and to predict the hot tearing and residual stress of shaped casting, MAGMASOFT simulation program was used. The strategy of this research was the prediction of hot tear location using pinpointing hot spot and thermal stress concentration zones. The results shows that existing of stress concentration zone increases the hot tearing probability and consequently reduces the amount of remaining residual stress in casting parts.

Keywords: Hot tearing, residual stress, simulation, investment casting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
9677 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: Heating element, plugging, rotary heat exchanger, thermal fluid characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
9676 Study of Thermal Effects while Filling an Empty Tank

Authors: Y. Kerboua Ziari, M. Benouahlima, A. Benzaoui

Abstract:

We are interested in this paper to the thermal effects occurring during the filling of hydrogen tanks. The consequence of this heating on the storage performance of these speakers was appreciated. The motivation comes from the fact that the development of hydrogen as an energy carrier of the future will require strong evolution in the field of storage modes to smaller, less expensive lighter, with a strong security interest and considerable autonomy.

Keywords: Hydrogen, Fuel, Storage, Energy, Modeling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
9675 Effect of Interior Brick-infill Partitions on the Progressive Collapse Potential of a RC Building: Linear Static Analysis Results

Authors: Meng-Hao Tsai, Tsuei-Chiang Huang

Abstract:

Interior brick-infill partitions are usually considered as non-structural components, and only their weight is accounted for in practical structural design. In this study, the brick-infill panels are simulated by compression struts to clarify their effect on the progressive collapse potential of an earthquake-resistant RC building. Three-dimensional finite element models are constructed for the RC building subjected to sudden column loss. Linear static analyses are conducted to investigate the variation of demand-to-capacity ratio (DCR) of beam-end moment and the axial force variation of the beams adjacent to the removed column. Study results indicate that the brick-infill effect depends on their location with respect to the removed column. As they are filled in a structural bay with a shorter span adjacent to the column-removed line, more significant reduction of DCR may be achieved. However, under certain conditions, the brick infill may increase the axial tension of the two-span beam bridging the removed column.

Keywords: Progressive collapse, brick-infill partition, compression strut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
9674 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Bachy, Joerg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multifunctional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: Laser Structuring, Simulation, Finite element analysis, Thermal modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4326
9673 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: Heat transfer, mini channel, nanofluid, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
9672 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
9671 Investigation and Comparison of Energy Intensity in Iranian Transportation Industry (Case Study Road Transportation Sector)

Authors: A. Mojtaba Aghajani, B. Leila Shavakhi

Abstract:

Energy intensity(energy consumption intensity) is a global index which computes the required energy for producing a specific value of goods and services in each country. It is computed in terms of initial energy supply or final energy consumption. In this study (research) Divisia method is used to decompose energy consumption and energy intensity. This method decomposes consumption and energy intensity to production effects, structural and net intensity and could be done as time series or two-periodical. This study analytically investigates consumption changes and energy intensity on economical sectors of Iran and more specific on road transportation(rail road and road).Our results show that the contribution of structural effect (change in economical activities combination) is very low and the effect of net energy consumption has the higher contribution in consumption changes and energy intensity. In other words, the high consumption of energy is due to Intensity of energy consumption and is not to structural effect of transportation sector.

Keywords: Divisia Method, Energy Intensity, Net IntensityEffect, Road Transportation , Structural Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
9670 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes

Authors: M. J. San José, S. Alvarez, R. López

Abstract:

In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.

Keywords: Biomass wastes, thermal combustion, conical spouted beds, vineyard wastes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
9669 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: Frequency response function, impact testing, modal analysis, oblique angle, oblique impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
9668 Optical Analysis of Variable Aperture Mechanism for a Solar Reactor

Authors: Akanksha Menon, Nesrin Ozalp

Abstract:

Solar energy is not only sustainable but also a clean alternative to be used as source of high temperature heat for many processes and power generation. However, the major drawback of solar energy is its transient nature. Especially in solar thermochemical processing, it is crucial to maintain constant or semiconstant temperatures inside the solar reactor. In our laboratory, we have developed a mechanism allowing us to achieve semi-constant temperature inside the solar reactor. In this paper, we introduce the concept along with some updated designs and provide the optical analysis of the concept under various incoming flux.

Keywords: Aperture, Solar reactor, Optical analysis, Solar thermal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
9667 Structural Damage Detection Using Sensors Optimally Located

Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero

Abstract:

The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore, when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures.

Keywords: Optimum sensor placement, structural damage detection, modal identification, beam-like structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
9666 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.

Keywords: Cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
9665 Effect of Unbound Granular Materials Nonlinear Resilient Behavior on Pavement Response and Performance of Low Volume Roads

Authors: K. Sandjak, B. Tiliouine

Abstract:

Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behavior of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behavior of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by Falling Weight Deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated. 

Keywords: Nonlinear resilient behavior, unbound granular materials, RLT test results, FWD backcalculations, finite element simulations, pavement response and performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
9664 Uniform Heating during Focused Ultrasound Thermal Therapy

Authors: To-Yuan Chen, Tzu-Ching Shih, Hao-Li Liu, Kuen-Cheng Ju

Abstract:

The focal spot of a high intensity focused ultrasound transducer is small. To heat a large target volume, multiple treatment spots are required. If the power of each treatment spot is fixed, it could results in insufficient heating of initial spots and over-heating of later ones, which is caused by the thermal diffusion. Hence, to produce a uniform heated volume, the delivered energy of each treatment spot should be properly adjusted. In this study, we proposed an iterative, extrapolation technique to adjust the required ultrasound energy of each treatment spot. Three different scanning pathways were used to evaluate the performance of this technique. Results indicate that by using the proposed technique, uniform heating volume could be obtained.

Keywords: focused ultrasound, thermal therapy, uniform heating, iteration, extrapolation, scan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
9663 Influence of Thermal and Mechanical Shocks to Cutting Edge Tool Life

Authors: Robert Cep, Lenka Ocenasova, Jana Novakova, Karel Kouril, Jan Valicek, Branimir Barisic

Abstract:

This paper deals with the problem of thermal and mechanical shocks, which rising during operation, mostly at interrupted cut. Here will be solved their impact on the cutting edge tool life, the impact of coating technology on resistance to shocks and experimental determination of tool life in heating flame. Resistance of removable cutting edges against thermal and mechanical shock is an important indicator of quality as well as its abrasion resistance. Breach of the edge or its crumble may occur due to cyclic loading. We can observe it not only during the interrupted cutting (milling, turning areas abandoned hole or slot), but also in continuous cutting. This is due to the volatility of cutting force on cutting. Frequency of the volatility in this case depends on the type of rising chips (chip size element). For difficult-to-machine materials such as austenitic steel particularly happened at higher cutting speeds for the localization of plastic deformation in the shear plane and for the inception of separate elements substantially continuous chips. This leads to variations of cutting forces substantially greater than for other types of steel.

Keywords: Cutting Tool Life, Heating, Mechanical Shocks, Thermal Shocks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
9662 Consideration Factors of Moving to a New Destination for Coastland Residents Under Global Warming

Authors: Ya-Fen Lee, Yun-Yao Chi, Cing-Hong Hung

Abstract:

Because of the global warming and the rising sea level, residents living in southwestern coastland, Taiwan are faced with the submerged land and may move to higher elevation area. It is desirable to discuss the key consideration factor for selecting the migration location under five dimensions of ಯ security”, “health”, “convenience”, “comfort” and “socio-economic” based on the document reviews. This paper uses the Structural Equation Modeling (SEM) and the questionnaire survey. The analysis results show that the convenience is the most key factor for residents in Taiwan. 

Keywords: Global warming, migration, structural equation modelling, questionnaire survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353