Search results for: bulk liquid membrane
521 Low Frequency Noise Behavior of Independent Gate Junctionless FinFET
Authors: A. Kamath, Z. X. Chen, C. J. Gu, F. Zheng, X. P. Wang, N. Singh, G-Q. Lo
Abstract:
In this paper we use low frequency noise analysis to understand and map the current conduction path in a multi gate junctionless FinFET. The device used in this study behaves as a gated resistor and shows excellent short channel effect suppression due to its multi gate structure. Generally for a bulk conduction device like the junctionless device studied in this work, the low frequency noise can be modelled using the mobility fluctuation model; however for this device we can also see the effect of carrier fluctuations on the LFN characteristic. The noise characteristic at different gate bias and also the possible location of the traps is explained.
Keywords: LFN analysis, junctionless, Current conduction path, FinFET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119520 Conditions of the Anaerobic Digestion of Biomass
Authors: N. Boontian
Abstract:
Biological conversion of biomass to methane has received increasing attention in recent years. Grasses have been explored for their potential anaerobic digestion to methane. In this review, extensive literature data have been tabulated and classified. The influences of several parameters on the potential of these feedstocks to produce methane are presented. Lignocellulosic biomass represents a mostly unused source for biogas and ethanol production. Many factors, including lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have used to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effects on cellulose, hemicellulose and lignin, the three main components of lignocellulosic biomass. Solidstate anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. An increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content may increase biogas yield but have negative impact on production efficiency. Focus is placed on substrate pretreatment in anaerobic digestion (AD) as a means of increasing biogas yields using today’s diversified substrate sources.
Keywords: Anaerobic digestion, Lignocellulosic biomass, Methane production, Optimization, Pretreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4248519 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract
Authors: Kenia Martínez, Geniel Talavera, Juan Alonso
Abstract:
Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.
Keywords: Antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801518 Design and Modeling of Human Middle Ear for Harmonic Response Analysis
Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey
Abstract:
The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.
Keywords: Computed tomography, human middle ear, harmonic response, pathologies, tympanic membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015517 3D Quantum Numerical Simulation of Horizontal Rectangular Dual Metal Gate\Gate All Around MOSFETs
Authors: M. Khaouani, A. Guen-Bouazza, B. Bouazza, Z. Kourdi
Abstract:
The integrity and issues related to electrostatic performance associated with scaling Si MOSFET bulk sub 10nm channel length promotes research in new device architectures such as SOI, double gate and GAA MOSFET. In this paper, we present some novel characteristic of horizontal rectangular gate\gate all around MOSFETs with dual metal of gate we obtained using SILVACO TCAD tools. We will also exhibit some simulation results we obtained relating to the influence of some parameters variation on our structure, that having a direct impact on their threshold voltage and drain current. In addition, our TFET showed reasonable ION/IOFF ratio of (104) and low drain induced barrier lowering (DIBL) of 39 mV/V.
Keywords: GAA, SILVACO, QUANTUM, MOSFETs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907516 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins
Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi
Abstract:
A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.
Keywords: Chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992515 Efficiency of Geocell Reinforcement for Using in Expanded Polystyrene Embankments via Numerical Analysis
Authors: S. N. Moghaddas Tafreshi, S. M. Amin Ghotbi
Abstract:
This paper presents a numerical study for investigating the effectiveness of geocell reinforcement in reducing pressure and settlement over EPS geofoam blocks in road embankments. A 3-D FEM model of soil and geofoam was created in ABAQUS, and geocell was also modeled realistically using membrane elements. The accuracy of the model was tested by comparing its results with previous works. Sensitivity analyses showed that reinforcing the soil cover with geocell has a significant influence on the reduction of imposed stresses over geofoam and consequently decreasing its deformation.
Keywords: EPS geofoam, road embankments, geocell, reinforcement, lightweight fill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316514 Thermodynamic Study of Seed Oil Extraction by Organic Solvents
Authors: Zhila Safari, Ali Ashrafizadeh, Najaf Hedayat
Abstract:
Thermodynamics characterization Sesame oil extraction by Acetone, Hexane and Benzene has been evaluated. The 120 hours experimental Data were described by a simple mathematical model. According to the simulation results and the essential criteria, Acetone is superior to other solvents but under certain conditions where oil extraction takes place Hexane is superior catalyst.Keywords: Liquid-solid extraction, seed oil, ThermodynamicStudy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079513 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue
Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella
Abstract:
Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.
Keywords: Automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70512 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.
Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305511 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method
Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang
Abstract:
Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.
Keywords: Chronic kidney disease, microfluidics, linear regression, VITROS analyzer, urinary albumin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876510 Nanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior
Authors: A. Mallick
Abstract:
The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism and microstructural characteristic at different test condition was discussed extensively. At room temperature, relatively lower value of activation volume (AV) and higher value of strain rate sensitivity (SRS) suggests that new rate controlling mechanism accommodating plastic flow in the present nanocrystalline sample. The deformation behavior and the microstructural character of the present samples were discussed in details.Keywords: Nanocrystalline, tensile properties, temperature effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465509 Effect of Temperature of Exposure on Properties of Cement Mortar with MSWI Bottom Ash
Authors: Z. Pavlík, M. Keppert, J. Žumár, M. Pavlíková, A. Trník, R. Černý
Abstract:
Effect of high temperature exposure on properties of cement mortar containing municipal solid waste incineration (MSWI) bottom ash as partial natural aggregate replacement is analyzed in the paper. The measurements of mechanical properties, bulk density, matrix density, total open porosity, sorption and desorption isotherms are done on samples exposed to the temperatures of 20°C to 1000°C. TGA analysis is performed as well. Finally, the studied samples are analyzed by IR spectroscopy in order to evaluate TGA data.
Keywords: Cement mortar, high temperature exposure, MSWI bottom ash, natural aggregate replacement, mechanical properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863508 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration
Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi
Abstract:
Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.
Keywords: Additive manufacturing, orthopaedic implants, osteointegration, trabecular structures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317507 Investigation of the Effect of Phosphorous on the Flame Retardant Polyacrylonitrile Nanofiber
Authors: Mustafa Yılmaz, Ahmet Akar, Nesrin Köken, Nilgün Kızılcan
Abstract:
Commercially available poly(acrylonitrile-co-vinyl acetate) P(AN-VA) or poly(acrylonitrile-co-methyl acrylate) P(AN-MA) are not satisfactory to meet the demand in flame and fire-resistance. In this work, vinylphosphonic acid is used during polymerization of acrylonitrile, vinyl acetate, methacrylic acid to produce fire-retardant polymers. These phosphorus containing polymers are successfully spun in the form of nanofibers. Properties such as water absorption of polymers are also determined and compared with commercial polymers.
Keywords: Flame retardant, nanofiber, polyacrylonitrile, phosphorous compound, membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863506 Temperature Effect on the Mechanical Properties of Pd3Rh and PdRh3 Ordered Alloys
Authors: J. Davoodi , J. Moradi
Abstract:
The aim of this research was to calculate the mechanical properties of Pd3Rh and PdRh3 ordered alloys. The molecular dynamics (MD) simulation technique was used to obtain temperature dependence of the energy, the Yong modulus, the shear modulus, the bulk modulus, Poisson-s ratio and the elastic stiffness constants at the isobaric-isothermal (NPT) ensemble in the range of 100-325 K. The interatomic potential energy and force on atoms were calculated by Quantum Sutton-Chen (Q-SC) many body potential. Our MD simulation results show the effect of temperature on the cohesive energy and mechanical properties of Pd3Rh as well as PdRh3 alloys. Our computed results show good agreement with the experimental results where they have been available.Keywords: Pd-Rh alloy; Mechanical properties; Moleculardynamics simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602505 Study on the Production of Chromite Refractory Brick from Local Chromite Ore
Authors: Waing Waing Kay Khine Oo, Shwe Wut Hmon Aye, Kay Thi Lwin
Abstract:
Chromite is one of the principal ore of chromium in which the metal exists as a complex oxide (FeO.Cr2O3).The prepared chromite can be widely used as refractory in high temperature applications. This study describes the use of local chromite ore as refractory material. To study the feasibility of local chromite, chemical analysis and refractoriness are firstly measured. To produce chromite refractory brick, it is pressed under a press of 400 tons, dried and fired at 1580°C for fifty two hours. Then, the standard properties such as cold crushing strength, apparent porosity, apparent specific gravity, bulk density and water absorption that the chromite brick should possess were measured. According to the results obtained, the brick made by local chromite ore was suitable for use as refractory brick.
Keywords: chemical analysis, chromite ore, chromite refractory brick, refractoriness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828504 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers
Authors: J. Zach, J. Hroudova, J. Brozovsky
Abstract:
Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.
Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559503 Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources
Authors: Alexey P. Antropov, Alexander V. Ragutkin, Nicolay A. Yashtulov
Abstract:
The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated.Keywords: Cyclic voltammetry, electron microscopy, nanotechnology, platinum-palladium nanocomposites, porous silicon, power activity, renewable energy sources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227502 Real-Time Detecting Concentration of Mycobacterium Tuberculosis by CNTFET Biosensor
Authors: Hsiao-Wei Wang, Jung-Tang Huang, Chun-Chiang Lin
Abstract:
Aptamers are useful tools in microorganism researches, diagnoses, and treatment. Aptamers are specific target molecules formed by oligonucleic acid molecules, and are not decomposed by alcohol. Aptamers used to detect Mycobacterium tuberculosis (MTB) have been proved to have specific affinity to the outer membrane proteins of MTB. This article presents a biosensor chip set with aptamers for early detection of MTB with high specificity and sensitivity, even in very low concentration. Meanwhile, we have already made a modified hydrophobic facial mask module with internal rendering hydrophobic for effectively collecting M. tuberculosis.
Keywords: Aptamers, CNTFET, Mycobacterium tuberculosis, early detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004501 Comparative Characterization Study of Malaysian Sand as Proppant
Authors: Dahlila Kamat, Ismail Mohd Saaid, Iskandar Dzulkarnain
Abstract:
This paper presents a review on published literature and experimental works on local sands for possible use as proppant, specifically those from Terengganu coastal area. This includes examination on characteristics of sand samples and selection of experiments for proppant testing. Sand samples from identified areas were tested according to particle size distribution, density, roundness and sphericity, turbidity and mineralogy. Results from sand samples were compared against proppant specifications set by API RP 56 and selected commercial proppants. The present study found that the size distribution, sphericity, turbidity and bulk density of Terengganu sands are at par with some of commercial proppants. Nevertheless, Terengganu sand samples do not completely surpass the required roundness for use as proppant.Keywords: Hydraulic fracturing, Malaysia sand, proppant, wellstimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113500 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network
Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita
Abstract:
In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.
Keywords: Exciton, Refractive index change, Extinction ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015499 ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell
Authors: S. Limpattayanate, M. Hunsom
Abstract:
A comparison of activity and stability of the as-formed Pt/C, Pt-Co and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single Proton Exchange Membrane (PEM) fuel cell, the Oxygen Reduction Reaction (ORR) activity of the Pt-M/C electrocatalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C > Pt-Co/C > Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electrochemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt- Pd/C was the most stable than the other three electrocatalysts.Keywords: ORR activity, Stability, Pt-based electrocatalysts, PEM fuel cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421498 Secondary Effects on Water Vapor Transport Properties Measured by Cup Method
Authors: Z. Pavlík, J. Fořt, J. Žumár, M. Pavlíková, R. Černý
Abstract:
The cup method is applied for the measurement of water vapor transport properties of porous materials worldwide. However, in practical applications the experimental results are often used without taking into account some secondary effects which can play an important role under specific conditions. In this paper, the effect of temperature on water vapor transport properties of cellular concrete is studied, together with the influence of sample thickness. At first, the bulk density, matrix density, total open porosity and sorption and desorption isotherms are measured for material characterization purposes. Then, the steady state cup method is used for determination of water vapor transport properties, whereas the measurements are performed at several temperatures and for three different sample thicknesses.
Keywords: Water vapor transport, cellular concrete, cup method, temperature, sample thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900497 Trust In Ad Media
Authors: Duygu Aydin
Abstract:
Advertising today has already become an integral part of human life as a building block of the consumer community. A component of the value chain of the media, advertising sector is struggling increasingly harder to find new methods to reach consumers. The tendency towards experimental marketing practices is increasing day by day, especially to divert consumers from the idea “They are selling something to me.” It is therefore considered a good idea to investigate the trust in ad media of consumers, who are today exposed to a great bulk of information from advertising sector. In this study, the current value of ad media for the young consumer will be investigated. Data on various ad media reliability will be comparatively analyzed and young consumers will be traced by including university students in the study. In this research, which will be performed on students studying at the Selçuk University (Turkey) by random sampling method, data will be obtained by survey technique and evaluated by a statistical analysis.Keywords: Trust in advertising, ad medium, media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952496 Performance of Bio-Composite Carbonized Materials in Probiotic Applications
Authors: Irina S. Savitskaya, Aida S. Kistaubayeva, Nuraly S. Akimbekov, Ilya E. Digel, Azhar A. Zhubanova
Abstract:
A new composite sorbent based on carbonized rice husk (CRH) and immobilized on it living cells and inactivated cultural liquid containing antimicrobials metabolites of Bacillus subtilis CK-245 is developed. The sorption and antimicrobic activity of CRH concerning five species of Enterobacteriaceae is studied. Prospects of use of developed sorbent in medicine and veterinary science is shown.
Keywords: CRH, probiotic, concentrated fugate, sorption and antimicrobial activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910495 Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study
Authors: Anand B. Desamala, Ashok Kumar Dasamahapatra, Tapas K. Mandal
Abstract:
In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.
Keywords: CFD, Horizontal pipeline, Oil-water flow, VOF technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5713494 Some Physical and Mechanical Properties of Russian Olive Fruit
Authors: D. Zare, F. Salmanizade, H. Safiyari
Abstract:
Physical and mechanical properties of Russian olive fruits were measured at moisture content of 14.43% w.b. The results revealed that the mean length, width and thickness of Russian olive fruits were 20.72, 15.73 and 14.69mm, respectively. Mean mass and volume of Russian olive fruits were measured as 1.45 g and 2.55 cm3, respectively. The sphericity, aspect ratio and surface area were calculated as 0.81, 0.72 and 8.96 cm2, respectively, while arithmetic mean diameter, geometric mean diameter and equivalent diameter of Russian olive fruits were 17.05, 16.83 and 16.84 mm, respectively. Whole fruit density, bulk density and porosity of jujube fruits were measured and found to be 1.01 g/cm3, 0.29 g/cm3 and 69.5%, respectively. The values of static coefficient of friction on three surfaces of glass, galvanized iron and plywood were 0.35, 0.36 and 0.43, respectively. The skin color (L*, a*, b*) varied from 9.92 to 16.08; 2.04 to 3.91 and 1.12 to 3.83, respectively. The values of rupture force, deformation, energy absorbed and hardness were found to be between 12.14-16.85 N, 2.16-4.25 mm, 3.42-6.99 N mm and 17.1-23.85 N/mm.Keywords: Mechanical and Physical properties, Russian olive fruits, friction coefficient
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204493 The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles
Authors: Lucie Vodova, Radomir Sokolar, Jitka Hroudova
Abstract:
Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste.
Keywords: Ceramic tiles, class C fly ash, calcite waste, calcium oxide, anorthite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3662492 Novel Glycopolymers Containing Carbohydrate Moiety: Copolymerization and Thermal Properties
Authors: Liliana M. Ştefan, Ana M. Pană, Geza Bandur, Marcel Popa, Lucian M. Rusnac
Abstract:
Polymers are one of the most widely used materials in our every day life. The subject of renewable resources has attracted great attention in the last period of time. New polymeric materials derived from renewable resources, like carbohydrates draw attention to public eye especially because of their biocompatibility and biodegradability. The aim of our paper was to obtain environmentally compatible polymers from monosaccharides. Novel glycopolymers based on D-glucose have been obtained from copolymerization of a new monomer carrying carbohydrate moiety with methyl methacrylate (MMA) via free radical bulk polymerization. Differential scanning calorimetry (DSC) was performed in order to study the copolymerization process of the monomer into the chosen co-monomer; the activation energy of this process was evaluated using Ozawa method. The copolymers obtained were characterized using ATR-FTIR spectroscopy. The thermal stability of the obtained products was studied by thermogravimetry (TG).
Keywords: DSC, glycopolymer, monosaccarides, TG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709