Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method
Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang
Abstract:
Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.
Keywords: Chronic kidney disease, microfluidics, linear regression, VITROS analyzer, urinary albumin.
Digital Object Identifier (DOI): doi.org/1
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880References:
[1] Ahmad, M., Tundjungsari, V., Widianti, D., Amalia, P., Rachmawati, A.U., (2017). “Diagnostic decision support system of chronic kidney disease using support vector machine”. 2017 Second International Conference on Informatics and Computing (ICIC), doi: 10.1109/IAC.2017.8280576
[2] Wibawa, H.A., Malik, I., Bahtiar, N., (2018). “Evaluation of Kernel-Based Extreme Learning Machine Performance for Prediction of Chronic Kidney Disease”. 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), doi: 10.1109/ICICOS.2018.8621762
[3] Levey, A.S., Coresh, J., (2011), “Chronic kidney disease” Lancet 2012, Volume 379, ISSUE 9811, p. 165-180. doi:10.1016/S0140- 6736(11)60178-5
[4] Noche, K. J. B., Villaverde, J. F. and Lazaro, J. "Portable non-invasive blood pressure measurement using pulse transmit time," 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, 2017, pp. 1-4. doi: 10.1109/HNICEM.2017.8269546
[5] Coskun, A.F., Nagi, R., Sadeghi, K., Phillips, S., Ozcan, A., (2013). “Albumin testing in urine using a smart-phone”. Lab Chip, 2013,13, 4231-4238. doi: 10.1039/C3LC50785H
[6] Koroshi, A., (2007). “Microalbuminuria, is it so important?”. Hippokratia. 2007 Jul-Sep; 11(3): 105–107.
[7] Park, Ji & Baek, Hyunjeong & Kim, Bo & Jung, Hae Hyuk. (2017). Comparison of urine dipstick and albumin: Creatinine ratio for chronic kidney disease screening: A population-based study. PLOS ONE. 12. e0171106. doi: 10.1371/journal.pone.0171106. eCollection 2017.
[8] Zamanzad, B. (2009). Accuracy of dipstick urinalysis as a screening method for detection of glucose, protein, nitrites and blood. Eastern Mediterranean Health Journal, 15 5, 1323-8.
[9] Gangaram, R & Ojwang, P & Moodley, Jack & Maharaj, Dushyant. (2005). The Accuracy of Urine Dipsticks as a Screening Test for Proteinuria in Hypertensive Disorders of Pregnancy. Hypertension in pregnancy : official journal of the International Society for the Study of Hypertension in Pregnancy. 24. 117-23. 10.1081/PRG-200059849.
[10] Nader R., Karen G., Lawrence M.S., Immunoturbidimetry: An attractive technique for the determination of urinary albumin and transferrin, Clinical Biochemistry, Volume 20, Issue 3, p. 179-181, ISSN 0009-9120, doi:10.1016/S0009-9120(87)80117-0.
[11] Laiwattanapaisal, W., Songjaroen, T., Daniels, T., Lomas, T., Sappat, A., Tuantranont, A., (2009). On-Chip Immunoassay for Determination of Urinary Albumin. Sensors (Basel). 2009; 9(12): 10066–10079. doi: 10.3390/s91210066
[12] Chatziharalambous, D., Lygirou, V., Latosinska, A., Stravodimos, K., Vlahou, A., Jankowski, V., Zoidakis, J. (2016). Analytical Performance of ELISA Assays in Urine: One More Bottleneck towards Biomarker Validation and Clinical Implementation. PloS one. doi: 11. e0149471. 10.1371/journal.pone.0149471.
[13] Klapkova, E., Fortova, M., Richard, P., Moravcova, L., Kotaska, K. (2016). Determination of Urine Albumin by New Simple High-Performance Liquid Chromatography Method. Journal of clinical laboratory analysis. 30. doi: 10.1002/jcla.22007.
[14] Seegmiller, J. C., Sviridov, D., Larson, T. S., Borland, T. M., Hortin, G. L., & Lieske, J. C. (2009). Comparison of Urinary Albumin Quantification by Immunoturbidimetry, Competitive Immunoassay, and Protein-Cleavage Liquid Chromatography-Tandem Mass Spectrometry. Clinical Chemistry, 55(11), 1991–1994. doi:10.1373/clinchem.2009.129833
[15] Chan, O. T. M., & Herold, D. A. (2009). Chip Electrophoresis as a Method for Quantifying Total Albumin in Cerebrospinal Fluid. JALA: Journal of the Association for Laboratory Automation, 14(1), 6–11. doi: 10.1016/j.jala.2008.05.003
[16] Ketha, H., & Singh, R. J. (2016). Quantitation of albumin in urine by liquid chromatography tandem mass spectrometry. In Methods in Molecular Biology (Vol. 1378, pp. 31-36). (Methods in Molecular Biology; Vol. 1378). Humana Press Inc.. doi: 10.1007/978-1-4939-3182-8_4
[17] Gerhardt, R.F., Peretzki, A.J., Piendl, S.K., & Belder, D. (2017). Seamless Combination of High-Pressure Chip-HPLC and Droplet Microfluidics on an Integrated Microfluidic Glass Chip. Analytical chemistry, 89 23, 13030-13037 .
[18] Strehlitz B, Nikolaus N, Stoltenburg R. (2008). Protein Detection with Aptamer Biosensors. Sensors. 2008; 8(7):4296-4307.
[19] Czaplicki, S., (2014). Chromatography in Bioactivity Analysis of Compounds, yColumn Chromatography, IntechOpen, doi: 10.5772/55620
[20] Reichmuth, D., Shepodd, T., Kirby, B. (2005). Microchip HPLC of Peptides and Proteins. Analytical chemistry. 77. 2997-3000. 10.1021/ac048358r.
[21] Guzmán, J.M., Tayo, L.L., Liu, C.C., Wang, Y.N., & Fu, L. (2018). “Rapid microfluidic paper-based platform for low concentration formaldehyde detection”. Sensors and Actuators B: Chemical, ISSN: 0925-4005, Vol: 255, Page: 3623-3629. doi: 10.1016/j.snb.2017.09.080
[22] Valenzuela, I. C., & Cruz, F. R. G. (2015). Opto-electric characterization of pH test strip based on optical absorbance using tri-chromatic LED and phototransistor. 2015 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). doi:10.1109/r10-htc.2015.7391846
[23] Cruz, F. R. G., Magsipoc, C. M., Alinea, F. E. B., Baronia, M. E. P., Jumahadi, M. M., Garcia, R. G., and Chung, W., "Application specific integrated circuit (ASIC) for Ion Sensitive Field Effect Transistor (ISFET) L-Asparagine biosensor," 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 2698-2702. doi: 10.1109/TENCON.2016.7848529
[24] Caya, M. V. C., Cruz, F. R. G., Linsangan, N.B., Catipon, M.A.M., "Basal body temperature measurement using e-textile," 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, 2017, pp. 1-4. doi: 10.1109/HNICEM.2017.8269444
[25] De Los Reyes, A. M. M., Reyes, A. C. A., Torres, J. L., Padilla, D. A and Villaverde, J. F., "Detection of Aedes Aegypti mosquito by digital image processing techniques and support vector machine," 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 2342-2345. doi: 10.1109/TENCON.2016.7848448