Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30578
Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi

Abstract:

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.

Keywords: Additive manufacturing, Orthopaedic Implants, osteointegration, trabecular structures

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093155

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911

References:


[1] K. Anselme, "Osteoblast adhesion on biomaterials,” Biomaterials, vol. 21 (7), pp. 667-681, 2000.
[2] P. Heinl, L. Muller, C. Korner, R.F. Singer, F.A. Muller, "Cellular Ti6Al4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting,” Acta Biomaterialia, vol. 4 (5) pp. 1536-1544, 2008.
[3] M. Baleani, M. Viceconti, A. Toni, "The effect of sandblasting treatment on endurance properties of Titanium alloy hip prostheses,” Artificial Organs, vol. 24 (4), pp. 296-299, 2000.
[4] A. Christensen, A. Lippincott, R. Kircher, "Qualification of electron beam melted (EBM) Ti6Al4V­ELI for orthopaedic implant applications”, Golden, CO: Medical Modelling LLC, 2007.
[5] V.M. Goldberg, "Biology of grit blasted titanium alloy implants,” Clin Orthop Relat Res, vol. 319, pp. 122-12, 1995.
[6] K.H. Frosch, F. Barvencik, V. Viereck, C.H. Lohmann, K. Dresing, J. Breme, E. Brunner, K.M. Sturmen, "Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical Titanium channels,” Journal of Biomedical Materials Research, vol. 68A (2), pp. 325-334, 2004.
[7] V. Karageorgiou, D. Kaplan, "Porosity of 3D biomaterial scaffolds and osteogenesys,” Biomaterials, vol. 26, pp. 5474-5491, 2005
[8] H.R. Bloch, S. Burelli, D. Devine, D. Arens, "Enhanced bone in-growth of the highly porous Trabecular TitaniumTM”, in Proceedings of 13th European Federation of National Association of Orthopaedics and Traumatology (EFORT), Berlin, 2012.
[9] M. Mour, D. Das, T. Winkler, E. Hoenig, G: Mielke, M.M. Morlock, A.F. Schilling, "Advances in porous biomaterials for dental and orthopaedic,” Applications Materials, vol. 3, pp. 2947-2974, 2010.
[10] O. Cansizoglu, D. Harrysson, D. Cormier, H. West, T. Mahale, "Properties of Ti6Al4V non stochastic lattice structures fabricated via electron beam melting,” Material Science and Engineering, vol. 492 (1-2), pp. 468-474, 2008.
[11] J.C.S. Pires, A.F.B. Braga, P.R. Mei, "Profile of impurities in polycrystalline silicon samples purified in an electron beam melting surface,” Solar Energy Materials & Solar Cells, vol. 79 (3), pp. 347-355, 2003.
[12] A. Hershcovitch, "Non­vacuum electron beam welding through a plasma window,” Nuclear Instruments and Methods in Physics Research section B: Beam Interactions with Materials and Atoms, vol. 241 (1-4), pp. 854-857, 2005.
[13] Q.F. Guan, H. Zou, A.M. Wu, S.Z. Hao, J.X. Zou, Y. Qin, C. Dong, Q.Y. Zhang, "Surface nanostructure and amorphous state of a low carbon steel induced by high current pulsed electron beam,” Surface and Coating Technology, vol. 196 (1-3), pp. 145-149, 2005.
[14] S. Kalpakjian, S.R. Schmid, Manufacturing Engineering and Technology, Prentice Hall, Ed, 2009.
[15] P. Dalla Pria, M. Pressacco, E. Veronesi, "Nuove frontiere dell’osteointegrazione: Il trabecular titanium,” Sphera Medical Journal, vol. 7, pp. 46-50, 2008.
[16] E. Marin, S. Fusi, M. Pressacco, L. Paussa, L. Fedrizzi, "Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium,” Journal of mechanical behavior of biomedical materials, vol. 3 (5), pp. 373-381, 2010.
[17] E. Marin, M. Pressacco, S. Fusi, A. Lanzutti, S. Turchet, L. Fedrizzi, "Characterization of commercially pure Ti Trabecular TitaniumTM structures,” Materials Science and Engineering C: Materials for biological applications, vol. 33, pp. 2648-2656, 2013.
[18] D. Devine, D. Arens, S. Burelli, H.R. Bloch, L. Boure, "In vivo evaluation of the osteointegration of new highly porous Trabecular Titanium™”, Journal of Bone and Joint Surgery, vol. 94-B(Suppl XXXVII), pp. 201.
[19] C.R. Ethier, C.A. Simmons, Introductory biomechanics: from cells to organisms, pp. 385-387, 2007.
[20] M. Ding, M. Dalastra, C.C. Danielsen, J. Kabel, I. Hvid, F. Linde, "Age variations in the properties of human tibial trabecular bone, Journal of bone and joint surgery, vol. 79, pp. 995-1002, 1197.
[21] ASTM F1147, "Standard Test Method for Tension Testing of Calcium Phosphate and Metallic Coatings”, ASTM international, 2005.
[22] M.F. Ashby, R.F.M. Medalist, "The mechanical properties of cellular solids,” Metallurgical and Materials Transactions A, vol. 14, pp. 1755-1769, 1983.
[23] M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadley, Metal foams – a design guide, Buttenworth Heineman, Ed: Elsevier, 2000.
[24] J.J. Callaghan, A.G. Rosenberg, H.E. Rubash, in The adult hip, 2nd ed. vol. 1, Lippincott Williams & Wilkins, 2007.
[25] V. Sollazzo, et al., "Genetic effects of Trabecular Titanium on MG-63 cell line: a genetic profiling evaluation,” ISRN materials science, vol. 2011, ID 392763, 2011.
[26] G. Gastaldi, A. Asti, M.F. Scaffino, L. Visai, E. Saino, A.M. Cometa, F. Benazzo, "Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on Trabecular Titanium scaffolds,” Journal of biomedical materials research part A, vol. 94 (3), pp. 790-799, 2010.
[27] F. Benazzo, G. Gastaldi, J. Fontanta, L. Marullo, "Osteoinductive properties of Trabecular Titanium scaffolds on hASCs (adipose derived stem cells) ontogenetically differentiated,” Journal of bone and joint surgery, vol. 94 (B), pp. 197 (suppl. XXXVII), 2012.
[28] M.F. Saffino, L. Botta, M.A. Avanzini, M. Mantelli, F. Benazzo, G. Gastaldi, "Use of adipose derived stem cells for orthopaedic tissue engineering: osteogenic differentiation on a Trabecular TitaniumTM 3-dimensional scaffold”, in Proceedings of the 1st International conference on adipose tissue (ICAT), Venice, 2011, pp. 97-98.
[29] V. Sollazzo, A. Plamieri, L. Massari, F. Clarinci, "Genetic effects of Trabecular Titanium on cells MG-63 line: an in vitro study,” Journal of orthopaedic traumatology, vol. 13 (1), pp. 107, 2012.
[30] E. Marin, L. Fedrizzi, M. Regis, M. Pressacco, L. Zagra, S. Fusi, "Stability enhancement of prosthetic implants: friction analysis of Trabecular Titanium”; Hip international, vol. 22 (4), pp. 427-428, 2012.
[31] F. Benazzo, L. Botta, M.F. Scaffino, L. Caliogna, M. Marullo, S. Fusi, G. Gastaldi, "Trabecular Titanium can induce in vitro osteogenic differentiation of human adipose derived stem cells without osteogenic factors,” Journal of biomedical materials research part A,
[Epub ahead of print], 2013.
[32] L. Massari, A. Causero, P. Rossi, P.P. Grillo, A. Bistolfi, G. Gigliofiorito, C. Pari, A. Francescotto, P. Tosco, D. Deledda, G. Carli, S. Burelli, "Multicentre prospective densitometric study on Trabecular TitaniumTM osseointegration,” Bone joint journal, vol. 95-B (suppl. 34), pp. 416, 2013.
[33] L. Perticarini, L. Piovani, S.M.P. Rossi, A. Combi, A. Padolino, F. Benazzo, "242 cups in Trabecular Titanium: short-term follow-up,” Journal of orthopaedic traumatology, vol. 12 (suppl. 1), pp. 147, 2011.