Low Frequency Noise Behavior of Independent Gate Junctionless FinFET
Authors: A. Kamath, Z. X. Chen, C. J. Gu, F. Zheng, X. P. Wang, N. Singh, G-Q. Lo
Abstract:
In this paper we use low frequency noise analysis to understand and map the current conduction path in a multi gate junctionless FinFET. The device used in this study behaves as a gated resistor and shows excellent short channel effect suppression due to its multi gate structure. Generally for a bulk conduction device like the junctionless device studied in this work, the low frequency noise can be modelled using the mobility fluctuation model; however for this device we can also see the effect of carrier fluctuations on the LFN characteristic. The noise characteristic at different gate bias and also the possible location of the traps is explained.
Keywords: LFN analysis, junctionless, Current conduction path, FinFET.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087650
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119References:
[1] C. Y. Chang, T. L. Lee, C. Wann, L. S. Lai, H. M. Chen, C. C. Yeh, C. S. Chang, C. C. Ho, J. C. Sheu, T. M. Kwok, F. Yuan, S. M. Yu, C. F. Hu, J. J. Shen, Y. H. Liu, C. P. Chen, S. C. Chen, L. S. Chen, L. Chen, Y. H. Chiu, C.Y. Fu, M. J. Huang, Y. L. Huang, S. T. Hung, J. J. Liaw, H. C. Lin, H. H. Lin, L. T. S. Lin, S. S. Lin, Y. J. Mii, E. Ou-Yang, M. F. Shieh, C. C. Su, S. P. Tai, H. J. Tao, M. H. Tsai, K. T. Tseng, K. W. Wang, S. B. Wang, J. J. Xu, F. K. Yang, S. T. Yang, C. N. Yeh, “A 25- nm gate-lenth FinFET transistor module for 32nm node”, IEDM Tech. Dig., 2009, pp. 1-4.
[2] S. Xin, L. Qiang, V. Moroz, H. Takeuchi, G. Gebara, J. Wetzel, S. Ikeda, C. Shin, T.J.K. Liu, “Tri-Gate Bulk MOSFET Design for CMOS Scaling to the End of the Roadmap”, IEEE Electron Device Lett., vol. 29, no.5, pp. 491-493, May 2008.
[3] N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. tung, K. M. Hoe, S. R. Omanpuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubtramanian and D. L. Kwong, “Ultra- Narrow Silicon Nanowire Gate-All-Around CMOS Devices: Impact of Diameter, Channel-Orientation and Low Temperature Device Performance”, IEDM 2006, pp. 1-4.
[4] B. Yang, K. D. Buddharaju, S. H. G. Teo, N. Singh, G. Q. Lo and D. L Kwong, “Vertical silicon-nanowire formation and gate-all-around MOSFET”, IEEE Electron Device Lett, vol. 29, no. 7, pp. 791-794, Jul. 2008.
[5] T. Honda, M. Kawashima, Y. Sekine, K. Yamazoe, E. Sakamoto, “Hyper-NA imaging in ArF immersion lithography”, Microprocesses and Nanotechnology Conference 2005, pp. 10-11, 2005.
[6] J S. Borkar, “Design perspectives on 22nm CMOS and beyond”, IEDM Tech. Dig., 2009, pp. 93-94.
[7] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, R. Murphy, “Nanowire transistors without junctions”, Nature Nanotechnology, vol. 5, pp. 225-229, Feb. 2010.
[8] A.M. Ionescu, “Electronic Devices: Nanowire transistors made easy”, Nature Nanotechnology, vol. 5, pp. 178-179, Mar. 2010.
[9] C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, J. P. Colinge, “High-Temperature Performance of Silicon Juntionless MOSFETs”, IEEE Tran. Electron Devices, vol. 57, no. 3, pp. 620-625, Mar. 2010.
[10] Dae-Young Jeon, “Low Frequency noise behavior of junctionless transistors comared to inversion –mode transistors,” Solid-State Electronics, vol. 81, 2013.