Search results for: Exhaust gases oxidation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 464

Search results for: Exhaust gases oxidation.

74 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed and Temperature of Incubator Shaker

Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar

Abstract:

Microbes have been used to solve environmental problems for many years. The role of microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Treatment using microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida (P. putida), pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P. putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of P. putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. From mercury nitrate solution, a mercuryresistant bacterial strain which is able to reduce from ionic mercury to metallic mercury was used to reduce ionic mercury. The overall levels of mercury removal in this study were between 80% and 89%. The information obtained in this study is of fundamental for understanding of the survival of P. putida ATTC 49128 in mercury solution. Thus, microbial mercury removal is a potential bioremediation for wastewater especially in petrochemical industries in Malaysia.

Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
73 Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

Authors: Mohd.F.Shabir, P. Tamilporai, B. Rajendra Prasath

Abstract:

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Keywords: Low Heat Rejection, Miller cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
72 Dynamic Stall Characterization of Low Reynolds Airfoil in Mars and Titan’s Atmosphere

Authors: Vatasta Koul, Vaibhav Sharma, Ayush Gupta, Rajesh Yadav

Abstract:

Exploratory missions to Mars and Titan have increased recently with various endeavors to find an alternate home to humankind. The use of surface rovers has its limitations due to rugged and uneven surfaces of these planetary bodies. The use of aerial robots requires the complete aerodynamic characterization of these vehicles in the atmospheric conditions of these planetary bodies. The dynamic stall phenomenon is extremely important for rotary wings performance under low Reynolds number that can be encountered in Martian and Titan’s atmosphere. The current research focuses on the aerodynamic characterization and exploration of the dynamic stall phenomenon of two different airfoils viz. E387 and Selig-Donovan7003 in Martian and Titan’s atmosphere at low Reynolds numbers of 10000 and 50000. The two-dimensional numerical simulations are conducted using commercially available finite volume solver with multi-species non-reacting mixture of gases as the working fluid. The k-epsilon (k-ε) turbulence model is used to capture the unsteady flow separation and the effect of turbulence. The dynamic characteristics are studied at a fixed different constant rotational extreme of angles of attack. This study of airfoils at different low Reynolds number and atmospheric conditions on Mars and Titan will be resulting in defining the aerodynamic characteristics of these airfoils for unmanned aerial missions for outer space exploration.

Keywords: Aerodynamic, dynamic stall, low Reynolds, Mars, Titan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606
71 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: Heterogeneous catalysis, photodegradation, reactive oxygen species, TiO2 nanowires.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
70 The Mitigation Strategy Analysis of Kuosheng Nuclear Power Plant Spent Fuel Pool Using MELCOR2.1/SNAP

Authors: Y. Chiang, J. R. Wang, J. H. Yang, Y. S. Tseng, C. Shih, S. W. Chen

Abstract:

Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of Spent Fuel Pools (SFPs) in Taiwan after Fukushima event. In order to estimate the safety of Kuosheng NPP SFP, by using MELCOR2.1 and SNAP, the safety analysis of Kuosheng NPP SFP was performed combined with the mitigation strategy of NEI 06-12 report. There were several steps in this research. First, the Kuosheng NPP SFP models were established by MELCOR2.1/SNAP. Second, the Station Blackout (SBO) analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition. The results showed that the calculations of MELCOR and TRACE were very similar in this case. Second, the mitigation strategy analysis was done with the MELCOR model by following the NEI 06-12 report. The results showed the effectiveness of NEI 06-12 strategy in Kuosheng NPP SFP. Finally, a sensitivity study of SFP quenching was done to check the differences of different water injection time and the phenomena during the quenching. The results showed that if the cladding temperature was over 1600 K, the water injection may have chance to cause the accident more severe with more hydrogen generation. It was because of the oxidation heat and the “Breakaway” effect of the zirconium-water reaction. An animation model built by SNAP was also shown in this study.

Keywords: MELCOR, SNAP, spent fuel pool, quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
69 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: Fire dynamics, flame propagation, locomotive fire, soot flow pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
68 Tribological Investigation and the Effect of Karanja Biodiesel on Engine Wear in Compression Ignition Engine

Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare

Abstract:

Various biomass based resources, which can be used as an extender, or a complete substitute of diesel fuel may have very significant role in the development of agriculture, industrial and transport sectors in the energy crisis. Use of Karanja oil methyl ester biodiesel in a CI DI engine was found highly compatible with engine performance along with lower exhaust emission as compared to diesel fuel but with slightly higher NOx emission and low wear characteristics. The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Pongamia methyl ester (PME) was prepared by transesterification process using methanol for long term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel. A neat biodiesel (PME) was selected as a fuel for the tribological study of biofuels. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on neat biodiesel and diesel respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy (AAS) for measurement of various wear metal traces present. The additional lubricating property of biodiesel fuel due to higher viscosity as compared to diesel fuel resulted in lower wear of moving parts and thus improved the engine durability with a bio-diesel fuel. Results reported from AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.

Keywords: Transesterification, PME, wear of engine parts, Metal traces and AAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
67 Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province

Authors: Leila Rashidian, Abbas Ebrahimi

Abstract:

The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO2 in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM3 model in 2010-2030 time interval have been used based on the A2 propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat.

Keywords: Climate change, Lars.WG, HADCM3 model, Fars province, climatic parameters, A2 scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
66 Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI) techniques control is used to control the fuel cell output power by control input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparison study is applied between the performance of fuzzy logic control (FLC) and neural network control (NNC). The results show the effectiveness of NNC over FLC.

Keywords: PEM fuel cell, Diffused aeration system, Artificialintelligence (AI) techniques, neural network control, fuzzy logiccontrol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
65 Compact Optical Sensors for Harsh Environments

Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi

Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Keywords: Accelerometer, harsh environment, optical MEMS, pressure sensor, remote sensing, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
64 Utilization of 3-N-trimethylamino-1-propanol by Rhodococcus sp. strain A4 isolated from Natural Soil

Authors: Isam A. Mohamed Ahmed, Jiro Arima, Tsuyoshi Ichiyanagi, Emi Sakuno, Nobuhiro Mori

Abstract:

The aim of this study was to screen for microorganism that able to utilize 3-N-trimethylamino-1-propanol (homocholine) as a sole source of carbon and nitrogen. The aerobic degradation of homocholine has been found by a gram-positive Rhodococcus sp. bacterium isolated from soil. The isolate was identified as Rhodococcus sp. strain A4 based on the phenotypic features, physiologic and biochemical characteristics, and phylogenetic analysis. The cells of the isolated strain grown on both basal-TMAP and nutrient agar medium displayed elementary branching mycelia fragmented into irregular rod and coccoid elements. Comparative 16S rDNA sequencing studies indicated that the strain A4 falls into the Rhodococcus erythropolis subclade and forms a monophyletic group with the type-strains of R. opacus, and R. wratislaviensis. Metabolites analysis by capillary electrophoresis, fast atom bombardment-mass spectrometry, and gas chromatography- mass spectrometry, showed trimethylamine (TMA) as the major metabolite beside β-alanine betaine and trimethylaminopropionaldehyde. Therefore, the possible degradation pathway of trimethylamino propanol in the isolated strain is through consequence oxidation of alcohol group (-OH) to aldehyde (-CHO) and acid (-COOH), and thereafter the cleavage of β-alanine betaine C-N bonds yielded trimethylamine and alkyl chain.

Keywords: Homocholine, 3-N-trimethylamino-1-propanol, Quaternary ammonium compounds, 16S rDNA gene sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
63 Absorption of Volatile Organic Compounds into Polydimethylsiloxane: Phase Equilibrium Computation at Infinite Dilution

Authors: Edison Muzenda, Corina M Mateescu

Abstract:

Group contribution methods such as the UNIFAC are very useful to researchers and engineers involved in synthesis, feasibility studies, design and optimization of separation processes. They can be applied successfully to predict phase equilibrium and excess properties in the development of chemical and separation processes. The main focus of this work was to investigate the possibility of absorbing selected volatile organic compounds (VOCs) into polydimethylsiloxane (PDMS) using three selected UNIFAC group contribution methods. Absorption followed by subsequent stripping is the predominant available abatement technology of VOCs from flue gases prior to their release into the atmosphere. The original, modified and effective UNIFAC models were used in this work. The thirteen selected VOCs that have been considered in this research are: pentane, hexane, heptanes, trimethylamine, toluene, xylene, cyclohexane, butyl acetate, diethyl acetate, chloroform, acetone, ethyl methyl ketone and isobutyl methyl ketone. The computation was done for solute VOC concentration of 8.55x10-8 which is well in the infinite dilution region. The results obtained in this study compare very well with those published in literature obtained through both measurements and predictions. The phase equilibrium obtained in this study show that PDMS is a good absorbent for the removal of VOCs from contaminated air streams through physical absorption.

Keywords: Absorption, Computation, Feasibility studies, Infinite dilution, Volatile organic compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
62 Indoor Air Pollution of the Flexographic Printing Environment

Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević

Abstract:

The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.

Keywords: Flexographic printing, indoor air, multiple regression analysis, pollution emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
61 Projections of Climate Change in the Rain Regime of the Ibicui River Basin

Authors: Claudineia Brazil, Elison Eduardo Bierhals, Francisco Pereira, José Leandro Néris, Matheus Rippel, Luciane Salvi

Abstract:

The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.

Keywords: Climate change, hydrological potential, precipitation, mitigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
60 Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts

Authors: Victor R. Thulari, John Akach, Haleden Chiririwa, Aoyi Ochieng

Abstract:

Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO2. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO2 and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO2. Varieties of laboratory prepared TiO2 catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO2. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst.

Keywords: Degradation, kinetics, methyl orange, photocatalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
59 Study of the Quality of Surface Water in the Upper Cheliff Basin

Authors: Touhari Fadhila, Mehaiguene Madjid, Meddi Mohamed

Abstract:

This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH4+, NO2-) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds.

Keywords: Surface water quality, pollution, physical-chemical parameters, upper Cheliff basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
58 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: Speed, feed, depth of cut, roughness, cutting force, flank wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
57 Studies on Pre-Ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar

Abstract:

In this paper numerical studies have been carried out to examine the pre-ignition flow features of high-performance solid propellant rocket motors with two different port geometries but with same propellant loading density. Numerical computations have been carried out using a validated 3D, unsteady, 2nd-order implicit, SST k- ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create preignition pressure oscillations leading to thrust oscillations due to the flow unsteadiness and recirculation. We have also observed that the igniter temperature fluctuations are diminished rapidly thereby reaching the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Keywords: Pre-Ignition chamber dynamics, starting transient, solid rockets, thrust oscillations in SRMs, ignition transient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
56 Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace

Authors: Man Young Kim

Abstract:

In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribution in the slab throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings, including the radiant heat transfer among the slabs, the skids, the hot combustion gases and the furnace wall as well as the gas convective heat transfer in the furnace. With the introduction of the mathematical formulations validation of the present numerical model is conducted by calculating two example problems of blocked-off and nongray gas radiative heat transfer. After discussing the formation and growth of the scale on the slab surface, slab heating characteristics with scale is investigated in terms of temperature rise with time. 

Keywords: Reheating Furnace, Scale, Steel Slab, Radiative Heat Transfer, WSGGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4334
55 Influence of Dilution and Lean-premixed on Mild Combustion in an Industrial Burner

Authors: Sh.Khalilarya, H.Oryani, S.Jafarmadar, H.Khatamnezhad, A.Nemati

Abstract:

Understanding of how and where NOx formation occurs in industrial burner is very important for efficient and clean operation of utility burners. Also the importance of this problem is mainly due to its relation to the pollutants produced by more burners used widely of gas turbine in thermal power plants and glass and steel industry. In this article, a numerical model of an industrial burner operating in MILD combustion is validated with experimental data.. Then influence of air flow rate and air temperature on combustor temperature profiles and NOX product are investigated. In order to modification this study reports on the effects of fuel and air dilution (with inert gases H2O, CO2, N2), and also influence of lean-premixed of fuel, on the temperature profiles and NOX emission. Conservation equations of mass, momentum and energy, and transport equations of species concentrations, turbulence, combustion and radiation modeling in addition to NO modeling equations were solved together to present temperature and NO distribution inside the burner. The results shows that dilution, cause to a reduction in value of temperature and NOX emission, and suppresses any flame propagation inside the furnace and made the flame inside the furnace invisible. Dilution with H2O rather than N2 and CO2 decreases further the value of the NOX. Also with raise of lean-premix level, local temperature of burner and the value of NOX product are decreases because of premixing prevents local “hot spots" within the combustor volume that can lead to significant NOx formation. Also leanpremixing of fuel with air cause to amount of air in reaction zone is reach more than amount that supplied as is actually needed to burn the fuel and this act lead to limiting NOx formation

Keywords: Mild combustion, Flameless, Numerical simulation, Burner, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
54 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application

Authors: K. Masera, A. K. Hossain

Abstract:

Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.

Keywords: Biodiesel, blending, characterisation, CI Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
53 Impact of Standardized Therapeutic Hypothermia Protocol on Neurological Performance after Resuscitation from Cardiac Arrest

Authors: Tahsien Mohamed Okasha, Warda Youssef Mohamed Morsy, Hanan Elsayed Zaghla

Abstract:

We hypothesized that post cardiac arrest patients with Glasgow Coma Scale (GCS) score of less than 8 and who will be exposed to therapeutic hypothermia protocol will exhibit improvement in their neurological performance. 17 subjects were enrolled in this study all over one year. The study was carried out using Quasi-experimental research design. Four tools were used for data collection of this study: Demographic and medical data sheet, Post cardiac arrest health assessment sheet, Bedside Shivering Assessment Scale (BSAS), and Glasgow Pittsburgh cerebral performance category scale (CPC). The mean age was X̅ ± SD = 53 ± 8.122 years, 47.1% were arrested because of cardiac etiology. 35.3% subjects were initially arrested in form of ventricular tachycardia (VT), 23.5% initially arrested in form of ventricular fibrillation (VF), and 29.4% in form of A-Systole. Favorable neurological outcome was seen among 70.6%. There was significant statistical difference in WBC, Platelets, blood gases value, random blood sugar. Also, initial arrest rhythm, etiology of cardiac arrest, and shivering status were significantly correlated with cerebral performance categories score. Therapeutic hypothermia has positive effects on neurological performance among post cardiac arrest patients with GCS score of less than 8. Replication of the study on larger probability sample, with randomized control trial design is recommended with further study for suggesting nursing protocol for patients undergoing therapeutic hypothermia is recommended.

Keywords: Therapeutic hypothermia, neurological performance, after resuscitation from cardiac arrest, initial arrest rhythm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220
52 Structural Characterization and Physical Properties of Antimicrobial (AM) Starch-Based Films

Authors: Eraricar Salleh, Ida Idayu Muhamad, Nozieanna Khairuddin

Abstract:

Antimicrobial (AM) starch-based films were developed by incorporating chitosan and lauric acid as antimicrobial agent into starch-based film. Chitosan has wide range of applications as a biomaterial, but barriers still exist to its broader use due to its physical and chemical limitations. In this work, a series of starch/chitosan (SC) blend films containing 8% of lauric acid was prepared by casting method. The structure of the film was characterized by Fourier transform infrared spectroscopy (FTIR), Xray diffraction (XRD), and scanning electron microscopy (SEM). The results indicated that there were strong interactions were present between the hydroxyl groups of starch and the amino groups of chitosan resulting in a good miscibility between starch and chitosan in the blend films. Physical properties and optical properties of the AM starch-based film were evaluated. The AM starch-based films incorporated with chitosan and lauric acid showed an improvement in water vapour transmission rate (WVTR) and addition of starch content provided more transparent films while the yellowness of the film attributed to the higher chitosan content. The improvement in water barrier properties was mainly attributed to the hydrophobicity of lauric acid and optimum chitosan or starch content. AM starch based film also showed excellent oxygen barrier. Obtaining films with good oxygen permeability would be an indication of the potential use of these antimicrobial packaging as a natural packaging and an alternative packaging to the synthetic polymer to protect food from oxidation reactions

Keywords: Antimicrobial starch-based films, chitosan, lauric acid, starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776
51 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal

Authors: M. Feliciano, F. Maia, A. Gonçalves

Abstract:

Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.

Keywords: Carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
50 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst

Authors: D. Mowla, N. Rasti, P. Keshavarz

Abstract:

Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.

Keywords: Biodiesel, renewable fuel, transesterification, waste cooking oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
49 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Authors: Muhammad Shahid, Muhammad Mansoor

Abstract:

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Keywords: Carbon nanotubes, induction melting, nanocomposite, strengthening mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
48 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application

Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran

Abstract:

Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.

Keywords: Electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
47 Injection Molding of Inconel718 Parts for Aerospace Application Using Novel Binder System Based On Palm Oil Derivatives

Authors: R. Ibrahim, M. Azmirruddin, M. Jabir, N. Johari, M. Muhamad, A. R. A. Talib

Abstract:

Inconel718 has been widely used as a super alloy in aerospace application due to the high strength at elevated temperatures, satisfactory oxidation resistance and heat corrosion resistance. In this study, the Inconel718 has been fabricated using high technology of Metal Injection Molding (MIM) process due to the cost effective technique for producing small, complex and precision parts in high volume compared with conventional method through machining. Through MIM, the binder system is one of the most important criteria in order to successfully fabricate the Inconel718. Even though, the binder system is a temporary, but failure in the selection and removal of the binder system will affect on the final properties of the sintered parts. Therefore, the binder system based on palm oil derivative which is palm stearin has been formulated and developed to replace the conventional binder system. The rheological studies of the mixture between the powder and binders system have been determined properly in order to be successful during injection into injection molding machine. After molding, the binder holds the particles in place. The binder system has to be removed completely through debinding step. During debinding step, solvent debinding and thermal pyrolysis has been used to remove completely of the binder system. The debound part is then sintered to give the required physical and mechanical properties. The results show that the properties of the final sintered parts fulfill the Standard Metal Powder Industries Federation (MPIF) 35 for MIM parts.

Keywords: Binder system, rheological study, metal injection molding, debinding and sintered parts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
46 Methane and Other Hydrocarbon Gas Emissions Resulting from Flaring in Kuwait Oilfields

Authors: Khaireyah Kh. Al-Hamad, V. Nassehi, A. R. Khan

Abstract:

Air pollution is a major environmental health problem, affecting developed and developing countries around the world. Increasing amounts of potentially harmful gases and particulate matter are being emitted into the atmosphere on a global scale, resulting in damage to human health and the environment. Petroleum-related air pollutants can have a wide variety of adverse environmental impacts. In the crude oil production sectors, there is a strong need for a thorough knowledge of gaseous emissions resulting from the flaring of associated gas of known composition on daily basis through combustion activities under several operating conditions. This can help in the control of gaseous emission from flares and thus in the protection of their immediate and distant surrounding against environmental degradation. The impacts of methane and non-methane hydrocarbons emissions from flaring activities at oil production facilities at Kuwait Oilfields have been assessed through a screening study using records of flaring operations taken at the gas and oil production sites, and by analyzing available meteorological and air quality data measured at stations located near anthropogenic sources. In the present study the Industrial Source Complex (ISCST3) Dispersion Model is used to calculate the ground level concentrations of methane and nonmethane hydrocarbons emitted due to flaring in all over Kuwait Oilfields. The simulation of real hourly air quality in and around oil production facilities in the State of Kuwait for the year 2006, inserting the respective source emission data into the ISCST3 software indicates that the levels of non-methane hydrocarbons from the flaring activities exceed the allowable ambient air standard set by Kuwait EPA. So, there is a strong need to address this acute problem to minimize the impact of methane and non-methane hydrocarbons released from flaring activities over the urban area of Kuwait.

Keywords: Kuwait Oilfields, ISCST3 model, flaring, Airpollution, Methane and Non-methane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
45 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study

Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes

Abstract:

The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.

Keywords: Coal ash, gold tailings, paste, surface disposal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408