Search results for: S. Ajith
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: S. Ajith

3 In Vitro and Experimental Screening of Mangrove Herbal Extract against Vibrio Alginolyticus in Marine Ornamental Fish

Authors: N. B. Dhayanithi, T. T. Ajith Kumar, T. Balasubramanian

Abstract:

Present study summarizes the control of Vibrio alginolyticus infection in hatchery reared Clownfish, Amphiprion sebae with the extract of the mangrove plant, Avicennia marina. Fishes with visible symptoms of hemorrhagic spots were chosen and the genomic DNA of the causative bacterium was isolated and sequenced based on 16S rDNA gene. The in vitro assay revealed that a fraction of A. marina leaf extract elucidated with ethyl acetate: methanol (6:4) showed a high activity (28 mm) at 125 μg/ml concentrations. About 4 % of the fraction fed along with live V. alginolyticus was significantly decreased the cumulative mortality (P<0.05) in the experimental groups than the control group. The responsible fraction was investigated by gas chromatography - mass spectroscopy and found the presence of active compounds. This is the first research in India to control vibriosis infection in marine ornamental fish with mangrove leaf extract.

Keywords: Amphiprion seabe, Avicennia marina, Gas Chromatography - Mass Spectroscopy, Vibrio alginolyticus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
2 Studies on Lucrative Design of Waste Heat Recovery System for Air Conditioners

Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith

Abstract:

In this paper comprehensive studies have been carried out for the design optimization of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Numerical studies have been carried for the geometry optimization of a waste heat recovery system for domestic air conditioners. Numerical computations have been carried out using a validated 2d pressure based, unsteady, 2nd-order implicit, SST k-ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. At identical inflow and boundary conditions various geometries were tried and effort has been taken for proposing the best design criteria. Several combinations of pipe line shapes viz., straight and spiral with different number of coils for the radiator have been attempted and accordingly the design criteria has been proposed for the waste heat recovery system design. We have concluded that, within the given envelope, the geometry optimization is a meaningful objective for getting better performance of waste heat recovery system for air conditioners.

Keywords: Air-conditioning system, Energy conversion system, Hot water production from waste heat, Waste heat recovery system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
1 Studies on Pre-Ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar

Abstract:

In this paper numerical studies have been carried out to examine the pre-ignition flow features of high-performance solid propellant rocket motors with two different port geometries but with same propellant loading density. Numerical computations have been carried out using a validated 3D, unsteady, 2nd-order implicit, SST k- ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create preignition pressure oscillations leading to thrust oscillations due to the flow unsteadiness and recirculation. We have also observed that the igniter temperature fluctuations are diminished rapidly thereby reaching the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Keywords: Pre-Ignition chamber dynamics, starting transient, solid rockets, thrust oscillations in SRMs, ignition transient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229